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1
METHOD FOR SECURING A PROGRAM

TECHNICAL FIELD

The present invention relates to a method for securing a
program as well as a computer software product implement-
ing the method.

BACKGROUND OF THE INVENTION

By securing the program it should be understood that in this
disclosure, the program is written in order to guarantee oper-
ating in accordance with the specifications or the operating
constraints, or that some of its (local) properties (as defined
below) are proven correct. Thus, for example, in an automatic
controlling equipment of a system, such as a rocket, a train,
etc., it is necessary to ensure that the program executes
exactly within its operating range in order to prevent jeopardy
of the system or the environment thereof.

This is particularly important in complex systems because
these systems, owing to their complexity, are very difficult to
analyze by specialists. This difficulty may be illustrated by
the accident that occurred during the first flight of the Ariane
V rocket, which after expertise, turned out to be due to a thrust
engine control computer. In fact, the thrust engine control
computer was programmed for the previous generation rocket
Ariane IV that was less powerful with less strong accelera-
tions. The transfer of this computer onto the Ariane V rocket
without taking this new parameter into consideration led the
latter to receive acceleration data, which triggered an unan-
ticipated register overflow and a motor control malfunction.
Thus, it is extremely important, for critical systems, that the
execution domain as well as the execution within this domain
to be perfectly defined, documented and verified.

The currently used techniques are mainly based on math-
ematical rules based on first-order logic, or high-order logic
such as Coq. The currently used techniques consist in using
specific programming languages with software tools which
will attempt to prove, in the mathematical sense. These soft-
ware programs are called, in the literature, “provers”.

The operation of these provers fundamentally consists in
transcribing the studied program into logical assertions (i.e.
“proof obligations™) to be proven. Another possibility is to
use the logical language itself, such as Coq, in order to
describe the programs, express the properties and prove, thus
avoiding the need for transformation into logical assertions.

However, it appears that the complexity, in the algorithmic
sense, of the search for logic proofs increases faster than the
complexity of the studied program. In the case of a computer-
assisted proof, it appears that the user finds it difficult to use
the intuition he has for the good operating of the program, in
order to guide the prover. These techniques thus, become very
difficult and high consumers of time and resources when
working on critical and complicated programs, such as con-
trol programs and/or complex system where security is
involved. Thus, while the need has become more important
and research teams have been working on this subject for at
least 30 years, these proof technologies have remained in the
laboratories or are used in extremely demanding sectors
regarding operational security such as aero space or rail
resulting in, e.g., in this case, a software architecture which
makes it difficult, if not impractible, to cut these programs
into sub-assemblies that can be managed by the provers.

It would be thus advantageous to obtain a method for
securing a program which would be adapted for usage on
complex programs. From now on, the term “proof” (or “for-
mal proof”) will be used as a synonym for “formal verifica-
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tion”, i.e., verification based on formal methods in general,
and the term “logic proot™ for the specific case of proof in
classic logic systems (predicate logic, higher-order logic).

SUMMARY OF THE INVENTION

In order to resolve one or several of the aforementioned
drawbacks, in an embodiment, a method for securing a first
program with a second program, a third program and a fourth
program, each program comprising constitutive elements,
said constitutive elements comprising a finite number of pro-
gram points and evolution rules associated with the program
points and defining the passage from one program point to
another program point, and each program comprising a defi-
nition of a set of properties each property being associated
with one or more of the constitutive elements of the program,
said method comprises constructing the fourth program by
defining at least one relation between at least one constitutive
element of the second program and at least one constitutive
element of the third program, said relation being named a
correspondence relation; exploiting the correspondence rela-
tion for establishing a relation between one property of the
first program and at least one property of the third or fourth
program, said relation being named a “sufficiency relation”
and being such that it creates an oriented relationship between
one local property of a program, and one or more local prop-
erties of the same or another program such that the proof of
the latter properties proves the first local property, or propa-
gate the proof of said property to at least one property of the
first program.

The first program can be referred to as the “target pro-
gram”, i.e. the target program to be secured by application of
the method. The fourth program can be referred to as being
the “correspondence program”, i.e. the one being used to
establish correspondence between the second and third pro-
gram. The second and third program can be referred to as
being the “elementary programs”, even if in practice they can
be as complex as needed or obtained as the composition of
some other programs. The term “elementary program” refers
more to the fact that the programs are elementary with respect
to the correspondence program that establishes correspon-
dence between their elements.

Thus, by using the path logic intrinsically included in the
program, it is possible to structure and thus reduce the size
and complexity of the expressions on which the prover will
execute.

Characteristics or particular embodiments, as described
throughout, can be used singly or in combination, as is appar-
ent to one with skill in the relevant art.

In embodiments, the first program can be the second pro-
gram or the fourth program, i.e. the second program is (plays
also the role of) the target program, or the fourth program is
(plays also the role of) the target program.

In embodiments, the fourth program can be the second
program or the third program, the fourth program is (plays
also the role of) one of the elementary programs.

In embodiments, the fourth program can be constructed
automatically by applying synchronization rules between the
second program and the third program.

According to an embodiment, a computer software product
comprises software instructions for implementing the afore-
mentioned method when said computer software product is
executed on a computer.

According to an embodiment, a system for securing a first
program with a second program, a third program and a fourth
program, each program comprising constitutive elements,
said constitutive elements comprising a finite number of pro-
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gram points and evolution rules associated with the program
points and defining the passage from one program point to
another program point, and each program comprising a defi-
nition of a set of properties each property being associated
with one or more of the constitutive elements of the program,
said system comprises a program builder for constructing the
fourth program by defining at least one relation between at
least one constitutive element of the second program and at
least one constitutive element of the third program, said rela-
tion being named a correspondence relation; a prover exploit-
ing the correspondence relation for establishing a relation
between one property of the first program and said at least one
property of the third or fourth program, said relation being
named a “sufficiency relation” and being such that it creates
an oriented relationship between one local property of a pro-
gram, and one or more local properties of the same or another
program such that the proof of the latter properties proves the
first local property, or for propagating the proof of said prop-
erty to at least one property of the first program.

BRIEF DESCRIPTION OF THE DRAWINGS

The embodiments of the invention can be better understood
upon reading the following detailed description of various
embodiments of the invention in connection with the accom-
panying drawings, in which:

FIG. 1A is a schematic view of a computer system for
implementing an embodiment of the invention;

FIG. 1B is a flowchart for operating an embodiment of the
invention;

FIG. 2 is a flowchart of constraints for example “Theo-
reml”;

FIG. 3 is a flowchart of constraints for example
“Theorem1Unfold”;

FIG. 4 is a flowchart of constraints for example “Axiom2”;

FIG. 5 is a flowchart of constraints for combination of
examples “Theorem1Unfold” and “Axiom?2”;

FIG. 6 is a flowchart of the same combination as FIG. 5
after suppressing impossible branches;

FIG. 7 is a flowchart of combination of three programs;

FIG. 81is aflowchart of constraints of the same combination
as FIG. 7 after suppressing impossible branches;

FIG. 9 is a network of three programs;

FIG. 10 is a flowchart of a method for securing a first
program with a second program, a third program, and a fourth
program, according to an embodiment; and

FIG. 11 is a flowchart of a method for securing a first
program with a second program, a third program, and a fourth
program, according to an embodiment.

While the embodiments of the invention are amenable to
various modifications and alternative forms, specifics thereof
have been shown by way of example in the drawings and will
be described in detail. It should be understood, however, that
the intention is not to limit the invention to the particular
embodiments described. On the contrary, the intention is to
cover all modifications, equivalents, and alternatives falling
within the spirit and scope of the invention as defined by the
appended claims.

DETAILED DESCRIPTION OF THE INVENTION

As used herein, the terms “program”, or “program to
secure” or “program to prove” will be used to name the
computer software being secured. The other computer soft-
ware which participates in or executes the steps of the secur-
ing method will be called “software(s)” or “computer soft-
ware(s)” or “software tool(s)”.
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In reference to FIG. 1A, a computer system 1 comprises
means 3 for computing and memorizing as well as a human-
machine interface device 5, typically of screen type, keyboard
and mouse. It also comprises storage means 7 in the form of
hard disks, solid disks or any other classic data storage means.

The human-machine interface is adapted to allow a user to
give directives to a computer software running on this com-
puter system 1 and view the analysis results provided by this
software.

The human-machine interface 5 comes in the form of a
program development environment with the associated tools.
Thus, it comprises software of text editing type, parser, com-
piler, etc. The Eclipse environment, written in Java, is an
example of such an environment.

Referring to FIGS. 1A and 1B, in a first step of the securing
method, step 11, a program is introduced on the human-
machine interface to a user. This program is classically intro-
duced in the form of a text file containing instructions, or
execution controls, sequenced in a high-level language.
Although, as it will be presented hereinafter, certain lan-
guages are more adapted than others for implementing the
securing method, the program could have been written in any
normally used programming language such as C, C++, ADA,
Java, PHP, FErlang, Python, assembler, etc.

In other embodiments, the method can be applied to pro-
grams written in more graphic languages, of state machine
type.

The program is generally composed of a set of run com-
mands, each command being typically associated with a pro-
gram point. These commands are combined by means of
structuring instructions, such as choices (“if . . . then . . .
else”), loops (“while . . . do . .. "), etc. In embodiments, the
structure can be graphically represented. The branches and
their annotations associated to a program point may generally
be considered as the evolution rules for the given program
point.

In embodiments, this definition of a program makes it
possible to have a recursive view: a first program to secure is
used/referenced in a second program, etc.

For a program, sub-program or run command, operating
ranges or execution constraints, as well as the associated
branching, are defined in step 13.

A runtime constraint comprises defining a domain in which
the program, command has a homogenous behavior. For
example, in the simple case of a run command or program
consisting in a division, two domains are naturally defined:
normal execution and divisor equal to zero. Each domain is
associated with a particular processing and defines a branch-
ing following this processing. For example, the normal execu-
tion will lead to the execution of the following command in
the program in which this command is used according to
“normal” structuring of the program whereas in the case
where the divisor is equal to zero will lead to another type of
branching, for example, to error, or branching towards a spe-
cific processing. Each runtime constraint and its associated
branching thus define a path rule. This generally leads to
defining programs having several exit cases. The thus defined
program, ifused in a second program, will hence have its exit
cases associated to branchings in the second program.

These definitions of path rules may be carried out in dif-
ferent ways or embodiments.

A first way or embodiment comprises that the human-
machine interface and/or the programming language of the
program provide tools allowing the user to “manually” define
these path rules.

The second way or embodiment comprises using libraries
and sequence recognition software, which will automatically
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define these path rules. For example, this recognition soft-
ware may search for the divisions contained within the pro-
gram and apply the path rules thereto, such as defined above.

A third way or embodiment, which will be the most illus-
trated herein, comprises defining for each program or com-
mand a finite set of exit cases, such as to only have to choose
the relevant cases upon using them (the others being called
here impossible cases or branching), as well as the branching
corresponding to the relevant cases.

At step 15, the logic tree structure of a sequence of cases is
created and used for simplification or proof purposes. The
tree structure is that obtained by following the processing
execution order (case taken for a command or a program) and
the associated branchings, the tree structure representing a set
of execution traces or routes or as will be seen later on a set of
logic traces, each logic trace representing a usually infinite set
of'execution traces corresponding to the same choice of cases
(and branchings). Any other means of proof may be also used
to prove the local properties or impossible branches.

In order to repeat the example of division, the associated
tree structure comprises arcs representing the two execution
routes: the normal execution and the error execution.

In embodiments, the tree structure is created by taking into
account the program structuring logic. The advantage of this,
with respect to a purely logic flattening is to substantially
limit the tree structure complexity. If, for example, before the
division, the program has a divisor test different from zero,
the error handling program arc corresponding to the division
by zero will not be generated, or may be deleted, as it is
“impossible” to take.

In embodiments where the program comprises a loop,
either there is an infinite tree structure, or the tree structure is
created by defining an invariant on an execution trace by
identifying the routes without loops and duplicating variables
possibly modified by the loops. This makes it possible in this
second case to create a tree structure as defined by a graph
without loops.

Thus, it is advantageous that the human-machine interface
device 5 makes it possible to define, or that the recognition
software defines, an impossible transition between two
sequences. In fact, this makes it possible to define a local
property, that is to say, the fact that the transition in this
execution place of the program is not possible, and moreover
allows reduction of the tree structure considering that it is not
necessary to develop “impossible” arcs. Likewise, in various
embodiments, it can be expressed and proven that a transition
is impossible, it can be declared and proven more generally
that a sub-graph is impossible (that is to say that it cannot be
used), and the program can be annotated of more classical
local properties (for example, Floyd-type) that must be
proven.

In the embodiment of the division, it is interesting that a
user interface makes it possible to define, or that the recog-
nition software defines the entry conditions of a fragment of
a particular program in order to limit the execution domain(s)
of said fragment.

At step 17, in an embodiment where there are properties
that remain to be proven, particularly branches declared
impossible and non-proven, the method returns to step 11,
either to complete the execution paths which were not
defined, or modity the logic of the program so that the for-
bidden modes cannot occur.

In order to carry out this tree structure analysis, a prover
should use the created tree structure to propagate constraints
at program points and use transitive closures and properties of
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congruence or functionalities for deleting useless branches
and bring, or contribute to, the formal proof of the smooth
operating of the program.

In embodiments, for the program to be completely secured,
it is necessary to demonstrate/show that for each transition of
the graph that has been declared as “impossible” the transi-
tion can never be taken in the execution of the program,
whatever the execution conditions. Analyzing routes leading
to the “impossible” transition at stake can typically be a way
of'proving this. If other, more classic local properties, such as
invariants, are used, they should naturally be proven too.

In embodiments, when a first program has already been
secured or proven, if the program to secure may be modified
by constant semantic transformations such as to reproduce
the structure of the first program, then the proof of the first
program is propagated to the program to be secured. This may
be particularly used in the aforementioned recognition soft-
ware. Besides, and more generally, it is not essential that two
programs be equivalent in order to use one for the proof of the
other. More loose properties may be used for this purpose.

In order to better understand the operating of this computer
software and the implementing method, examples will now
be used.

1. Introduction of a Descriptive Language

In order to facilitate the comprehension, an algorithm
description language called SM will be introduced. It makes
it possible to easily express the different elements imple-
mented by the embodiments. However, it is worth noting that,
in embodiments, any computer language can serve as a basis
for the implementation of the invention.

The embodiments described hereinafter, although they will
be mainly illustrated with the SM language, are intended for
programs written in very diverse languages or formalisms,
whether it be, for example, implementation languages, logic
or specification languages, graphic languages. It is simply
supposed that the SM language may be provided with seman-
tics under certain conditions, for example, operational
semantics when the program is executable, but the SM lan-
guage may also typically also have logic traits, for example,
universal or existential quantifiers. However, embodiments of
the SM language are neither introduced nor used here. It
should be simply and generally supposed that formal descrip-
tions (language or formalism) can be transformed into an
annotated graph such as described hereinafter (paragraph 2.1)
and potentially exhibiting “forks™ and “joins” making it pos-
sible to describe the parallelism and/or the concurrency. For
the sake of simplicity, the combination with logic quantifiers
will not be illustrated here and SM synchronization and par-
allelism primitives will not be introduced.

As an example, the subset of the SM language is illustrated
here using a few primitives of a FIFO queue, which is called
“seq”.

In an embodiment, consider the program “member”
defined in this sequence:

public member(elt x, seq e)
program -> [false]
[true:false, found :true]

{
1: fi=e;
while
2: [empty :exit]removeFirst(y+,f,{+) ;
3: [true:found, false :true](x=y) ;
¥
¥
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The program “member” searches for a value element “x” in
sequence “e” and returns “true” if it finds the element and
“false” in the opposite case. The program “member” starts by
placing the value of “e” in variable “f”, then scans “f” using a
loop in the search for the first element having the sought
value.

Exit Cases

The program normally terminates by the exit “true”, which
is by convention the main case, if the element is found, and by
the particular exit “false” in the opposite case. All programs
have an implicit “true” exit, and may, in addition, (and it is a
particularity of the language) comprise as many particular
exit cases as is necessary. These exit cases can be assigned any
name and is not limited to any one name. The case called
“error” is restricted for describing the presumed impossibility
of an exit or a branching as will be seen hereinafter. The exit
cases list (other than “true” which is implicit) are listed in the
program signature. Here, the list only includes one element,
“false”.

The program “member” thus comprises a finite number of
program points (here the points called/labeled 1, 2 and 3.
Also, no real syntax is introduced in this document for such
naming/labeling of program points).

Axiomatization of Implicit Programs

In order to parse the sequence, the program “member” uses
“removeFirst” which removes the first element of the
sequence to return to the variable “y” and the resulting
sequence in the variable “f”. “removeFirst” is also a program
(or predicate) and it has been used in the definition of another
program “member”. It is defined as:
public removeFirst(elt x+, seq e, seq {+)
implicit program—[empty]|

The key word « implicit» indicates that the definition of
the program is implicit (axiomatic in a certain manner), and
hence does not contain an explicit body such as the previous
program « member» . By default a program is explicit and
contains a body.

This program hence distinguishes between two cases, the
implicit case “true” and considered to be the main case, and
the particular case “empty”. Intuitively when the sequence is
empty, and that no element may be removed from the
sequence, the “removeFirst” call leads to the case and hence
to the exit “empty”.

Entry and Exit Variables

The “removeFirst” program has an entry value placed/
associated with variable “e€”, and two exit variables “x” and
“f”, identified by the following “+”. As is standard, and unless
otherwise indicated (not presented here), the exit variables
are only assigned and significant in the main case “true”.
Hence, as a rule in the case “empty” neither “f” nor “x” are
assigned, and their values cannot be used in the rest. A later
use of “f” will implicitly use the entry value which will not
have been modified. An attempt to use “y” (for example, in
loop exit) will be analyzed by the support tool as illegal as in
certain routes, in this instance in a loop exit case in the first
entry, the value of “’y” will not have been bound.

The program is by default deterministic and sequential (if
it was non deterministic, or if its execution model comprised,
for example, possibilities of back tracking or parallel execu-
tion with or without communication primitive, it would be
specified with key words or additional annotations, or even
written if necessary by means of a specific execution
machine.

Renaming Exit Cases

The part between brackets before the predicate “remove-
First” in its usage in the program “member” is a renaming
descriptor (in this instance [empty:exit] which makes it pos-
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8

sible to describe how case labels are renamed and hence
define how the different cases are “branched”. Such a renam-
ing descriptor may appear in front of a program call, as well
as practically in front of any encompassing syntactic struc-
ture, and in particular, in front of a program block. In this
example, there are two others, one in front of the main block
([true:false;found:true]), and [true:found] in front of the
equality (x=y).

By default “true” is branched to the following instruction,
ormore generally is branched so as to allow the “normal” flow
provided by the syntactic context: at the end of the loop
“while” the “normal” flow is to return at the start of'a loop, at
the end of the program the “normal” flow is to terminate the
program in the “normal” case, that is to say, the case “true”. A
loop “while” terminates by building when the case “exit” is
raised during the execution of the inside loop. It is thus
renamed “true”. Hence, in a certain manner, the part between
brackets (when it is mentioned explicitly) describes the man-
ner in which the cases should be renamed in order to deduce
the branchings to be carried out. Here, in the case of a
“removeFirst” exiting on the case “empty”, the latter having
been renamed “exit”, the corresponding transition, that is to
say, the case “empty” of “removeFirst”, branches the flow of
the program right after the loop. This loop being at the end of
the program, the program terminates in this case by a case
“true” itself renamed “false”. This intuitively corresponds to
the case where the sought element has not been found. In the
opposite case, one is in the case “true” (that is to say the
equality located in 3, responds “true”, renamed “found”, itself
renamed “true”).

Typically “fi=e” is syntactic sugar for describing “equals
(e,f+);” with:
public equals(seq a, seq b+)

implicit program
Likewise « x=y» is syntactic sugar for « equals(x,y)» with:

public equals(elt a, elt b)

implicit program—>[false]

In the first case the program « equals» associates to « f» a
value equal to the value of « e» (in fact a congruence unde-
fined here), and in the second case, it checks whether the two
values (from “a” and from “b”) are equal.

Hence, the renaming of exit cases of a program (or sub-
program) is the main manner provided in SM to allow the user
to describe the branching between program points, according
to the cases taken.

Logic Traces

Generally, the SM language uses Prolog like variables. If
any route is taken in the program (route taken by the program
in the flow of execution), by adding the logic annotations
associated to the transitions (and potentially to the states)
“logic execution trace” can be obtained. Typically, new vari-
able names will be generated by using a new variable name
each time a “+” is encountered during the execution of the
program, so as not to have any naming conflicts between the
variables encountered several times and modified during the
path. For example, the logic trace “equals(e,f+); removeFirst
(v+,5,1+); equals(x,y);” may be represented as the logic trace.

equals(e0,f1+);

removeFirst(yl+, f1, £2+);

equals(x0,y1);
which has the advantage of having program variables that
never change value (“single assignment” variables) and
which hence may be considered very naturally as logic vari-
ables. An implicit program is able to have several exit cases,
each case associated to a predicate (or a relationship). Obvi-
ously, here they are implicitly the cases “true” of the programs
“removeFirst” and “equals” which are supposed to have been
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used in the examples. Generally, each return case of a pro-
gram corresponds to a predicate (or logic expression, or rela-
tionship) that will be named here by convention by combining
the program name with the exit case, thus, the sequence of
predicates corresponding to the previous logic trace will be:

[true] equals(e0,f1+);

[true] removeFirst(yl+,f1,12+);

[true] equals(x0,y1);

This logic trace may also be represented by notation (n)
[true]equals(e0,f1+)—=(1) [true]removeFirst(yl+,f1,f2+)—
(m)[truelequals(x0,y1)—(0), where “n”, “1”, “m”, and “0”,
are program point labels, with the last one, i.e. “0” being
potentially and exit label. For conciseness, the logic trace can
be identified whenever appropriate by omitting some or all of
the predicate and parameters names, such as in (n) [true]—=(1)
[true]—=(m) [true]—(0).

Whenever (n) designates an (or the) entry point of the
program, the present trace describing a route from the entry of
the program to any point in the program is called prefix. In the
case when it is important to know if the trace is traversing
(going from a start point to an exit point we will use the term
“complete trace”). Thus, each command/program may be
associated with a set of predicates potentially of different
parities, a predicate being associated to each case, except the
case “error”. Another example of trace may be:

[true] equals(e0,f1+);

[empty] removeFirst(fl);

Typically, then « [empty] removeFirst(-,f1,-); » is none
other than « [true] empty(fl)» where “empty” is the predi-
cate/program, with two cases, « true» and « false» :

public empty (seq e)

implicit program—=[false]

Of course, each logic trace (complete or not), and each
prefix will generally correspond to a generally infinite set of
execution traces. These execution traces will correspond to
instancing of logic traces with domain values satisfying the
logic constraints. Complete traces may be considered accord-
ing to the need as in the two previous examples (complete
traversal of the program) or corresponding prefixes which
model the execution of the program from its beginning (acti-
vation) until any point where the program is not necessarily
terminated. In the SM language, the two are considered (the
second particularly make it possible to describe the semantics
of'the programs which do not terminate, for example, servers,
and the programs whereof the execution model may include
backtracking without however using infinite traces). How-
ever, this has no relevance for the invention described here.
Likewise, infinite traces may be, for example, considered.

When a finite logic trace is used, it is quite easy to associate
a logic expression to that trace: this logic expression is
obtained as the conjunction of predicates encountered along
the trace that specifies the constraints that must be respected
by the values of the variables during the execution. For
example, along the trace:

[true] equals(e0,f1+);
[true] removeFirst(y1+,f1,12+);
[true] equals(x0,y1);

The conjunction is: « [true] equals(e0,f1)« [true] remove-
First(y1,f1,f2)« [true] equals(x0,y1)» . Here, the
symbols « +» are unnecessary provided that the semantics of
a case does not depend on the usage of entry or exit variables:
the case «[true] equals(e0,f1+)» generates a value “f1”
which satisfies by definition the predicate “[true] equals(e0,
f1)» , where the second command is an equality test on two
values provided in entry. This convention is not necessary, but
allows for the simplification of the presentation and will be
used in the rest.
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Furthermore, it is noted that the predicates associated to
each case characterize the evolution relationships between
the program points, which they link. Thus, for example, start-
ing from point 2 of the program “member” there are two
possible evolutions materialized through the two cases “true”
and “empty” of the command/program “removeFirst”. The
first characterized by the relationship associated to the predi-
cate « [true] removeFirst(yl+,f1,2+)» (that is to say, the
relationship that associates a sequence “f1” to the pair con-
stituted of the first element “y1” of “f1”” and the sequence “f2”
constituted of elements « f1» following « 1» in «fl») and
leading from point 2 to point 3, the second « [empty] remove-
First(_,f1,£2+)» , (that is to say, the relationship that associ-
ates an empty sequence “f1”’ to empty sequence “f2”) leading
from point 2 to the “false” exit (or to the point towards which
this exit is branched in the case of a use of “member” in
another program).

In embodiments, the use of a logic trace is a manner of
using the tree structure of the program. The logic traces
although, defined here in the context of the SM language, may
be transposed and defined formally in more general lan-
guages, typically by induction.

In embodiments, logic trace (or prefix) is also a specific
case of program, a program without loop and with mono
branching. This is to be considered as such throughout the
document. Of course when considering some logic traces of a
given program, it is not necessary for the tool to reformat and
implement them as standard program.

Preconditions and Invariants

Let us now consider the program “remove”, the purpose of
which is to remove one and one instance only of “x” in
sequence “f”:

public remove (elt x,seq e, seq f+)
pre member(x,e) ;
program
{
empty(f+) ;
invariant member(x,e) ;
g=¢;
while
invariant member(x,g) ;
{
[empty :error]removeFirst(y+,g,8+) ;
[true :exit, false :true] (x=y) ;
addLast(y,f,f+) ;

while

[empty :exit]removeFirst(y+,8,8+) ;
addLast(y,f,f+) ;

public empty(seq e+)

implicit program

public addLast(elt x, seq e, seq f+)
implicit program

This example illustrates, first of all, the preconditions.
Here, this program does not describe an applicative relation-
ship (that is to say, that the function which associates “f” to
“x” and “e” is not a total function). In order to remove one and
only one value element “x” the program “remove” needs to be
applied to a sequence which contains at least an element
having this value. This example also illustrates the use of an
invariant, a first program invariant (useless here), then a loop
invariant which must be true at each passage in the loop.
Invariants in the SM language may be programs in all their
complexity. They can in particular introduce and modify spe-
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cific variables of the invariant as well as use the variables of
the program. An invariant is “true” if its evaluation returns the
label “true”.
Impossible Transitions

At last, the particular branching towards “error” is intro-
duced. This label is used to describe impossible branchings
(and, hence transitions). For example, in the definition of
“remove”, above, such a label is used at a place where it is
known that the set cannot be empty, and that it is always
possible to extract the first element (the “empty” case of the
first “removeFirst is impossible). When it is used in a pro-
gram, such as in the aforementioned “remove” example, it
signifies the need to express and hence proves that the tran-
sition is impossible. Here, intuitively, the branching is impos-
sible as “g” contains at least an element of value “x” as
expressed by the loop invariant and, hence, cannot be empty.
Further on, it will be seen that programs can also be used to
axiomatize a property that is considered to be true by hypoth-
esis. When the branching “error” is used in such a program
used as axiom, it means that the branching is supposed to be
impossible.
Axioms, Lemmas, Theorems

An SM expression provided with such constraints (impos-
sible transitions, preconditions) thus expresses properties. In
this regard, it can be considered according to the case as a
“theorem”, in this case a program to prove, a “lemma”, that is
to say an intermediary program which will have to be proven
and then can actually be used for the proof of another pro-
gram, or finally as an “axiom”, that is to say a program that is
supposed true, and which will allow, for example, to axiom-
atically define the respective behaviors of the programs
whereof certain are implicitly defined. In the following sec-
tion the usage of programs as axioms will be illustrated.

The use of label “error” in the axioms is illustrated here, in
this case for the definition of the two following axioms which
allow for the axiomatization of the three implicit programs,
“removeFirst”, “addLast” and of the first version of “empty”
(that of signature “empty(elt x+):

program // Axiom1

1: empty(e+);
2: [true:error]removeFirst(x+,e,e+) ;
program // Axiom2
{
1: addLast(x,e,f+) ;

while

{
2: [empty :exit]removeFirst(y+,e,e+) ;
3: [empty :error]removeFirst(z+,f,f+) ;
4: [false:error](y=z) ;

}
5: [empty :error]removeFirst(z+,f,{+) ;
6: [false:error](x=z) ;
7: [true:erronempty :true]removeFirst(z+,f,f+) ;
¥

Here, intuitively, for example, in the first axiom the branch-
ing is impossible as “e” contains an element, the one that has
just been added. The first axiom may be written in an equiva-
lent manner:
empty(e+); =>[true:false,empty:true|removeFirst(x+,e,f+);

This allows partial introduction of the construct « =>» of
the SM language. The construct makes it possible to limit the
context in which an instruction is executed. If the premise
terminates normally, that is to say with “true”, then the first
instruction of the conclusion is branched on, then the conclu-
sion is “executed” normally. If it is negative, the conclusions
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are not executed. This may occur in the case where the pre-
mises return the case « false» , « error» or any other label. In
the first case by convention, the implication returns “true”, in
the two other cases the label is returned without renaming.

Programs as Theorems

Typically, one may then want to deduce axioms from the
two following theorem programs (that is to say, the two fol-
lowing programs)

//Theorems

Theorem1 (for example, referring to FIG. 2): addLast(x,e,
f+); =>member(x,1);

Theorem2: member(x,e); addLast(y,e,f+); =>member(x,
s
2.0 Partial Functions Versus Total Functions

The SM language makes it possible to choose, to use com-
mands or programs which are total or partial functions. The
first definition of “remove” above is a partial function, thanks
to the usage of a precondition. However, a total function could
have been used without losing the separation in an exit case
required by the user, as in the following new definition:

public remove (elt x,seq e, seq f+) ->[notin]
program

empty (f+) ;

g:=¢;

while

{
[empty :notin]removeFirst(y+,g,8+) ;
[true :exit,false :true] (x=y) ;
addLast(y,f,f+) ;

while

[empty :exit]removeFirst(y+,8,8+) ;
addLast(y,f,f+) ;

public remove (elt x,seq e, seq f+)
program

empty(f+) ;
g:=¢;
while
{
[empty :exit]removeFirst(y+,8,8+) ;
[true :exit,false :true] (x=y) ;

addLast(y,f,f+) ;

while

{
[empty :exit]removeFirst(y+,8,8+) ;
addLast(y,f,f+) ;

¥

This second definition adds a case to the first to make it
total. The third adds a processing, which makes the function
total, but by changing its semantics. The third program
removes the first instance of the element having a given value,
if it exists, and otherwise it simply copies the sequence.

A similar example with the classic case of the division
would be:
public divideBy(x,y,z+)
pre nonZero(y)
implicit program
public divideBy(x,y,z+)—[zero]
implicit program
public divideBy(x,y,z+)//deterministic or undeterministic
value to be defined for y=0 implicit program
Intermediary Representation
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The SM language may be rather easily and naturally con-
verted into an internal representation, here called SMIL,
which represents a finite graph composed of a finite set of
states/nodes (program points in SM, whereof certain ones
may be entries or exits of the program), and a finite set of
oriented arcs linking some of these nodes. This SMIL repre-
sentation is then a manner of describing more directly the
evolution relationships between program points. Each node
represents a program point and is associated to a finite set of
variables (that is to say variable names). Each program arc
represents a case that can be labeled with a proposition on the
node variables (for the node label) or a proposition connect-
ing the variables of the two nodes linked by the program arc.
For example, in the first defined program, (“member™), a node
can be associated by command or called sub-program (it is the
point preceding the predicate call, then the two exit points,
one corresponding to the exit “true” and the other correspond-
ing to the exit “false”). For example, the node corresponding
to the call of the command “removeFirst” (the point placed
just before the call), it is typically the entry point of the loop
and looping (the end of the loop will reloop on this point).
Starting from this point are two arcs. One corresponds to the
case “true” of the command and will point to the following
point (that is to say the point preceding the call of the equality
test). This arc will be labeled by the predicate “[true]| remove-
First(y+,f,f+)” where “f” represents by convention the vari-
able “t” of the start state (of the point/node) of the program
arc, and “f+”, and “y+” represent by convention the variables
“f” and “y” of the destination state of the program arc. The
other program arc is that corresponding to the case “empty” of
the command and points towards the exit “false” of the pro-
gram “member” (corresponds to case “false” of the program
being defined). This program arc is labeled by the
predicate « [empty]| removeFirst(-,f,-)» which is found to
be by definition equivalent to “empty(f)”. In this example,
only the arcs are annotated. Simple invariants (classic, Floyd)
would correspond to predicates associated to nodes. In the
case of SM language even if simple invariants are allowed,
here program invariants are used, represented by bits of pro-
grams (sub-graphs) rather than the properties of the nodes.

Although it is not strictly necessary to generate or use such
an intermediary language for the inventions presented here-
inafter, itis a very convenient manner for implementing them.

As for the variables associated to the nodes in the graph,
they are typically determined automatically in the case of SM
by analyzing the program based on the variables provided in
parameters and by a fixed point mechanism (variable “inten-
sity” analysis). This analysis may identify certain incoheren-
cies, which must be corrected in the definition of the program,
for example, that a variable is used while it has not been
initialized in certain routes that may lead to a considered
point.

Furthermore, more generally, other forms of annotations or
arcs (or even nodes) may be considered, for example, sets,
relationships and these could be represented by intension or
extension.

1.11 Parallel Programming

The embodiments introduced hereinafter although pre-
sented on sequential and deterministic programs, are more
general, and are also applied to highly diverse execution
models, particularly parallel, concurrent programs, non
deterministic programs or subjected to “back-tracking” pos-
sibilities. At the intermediary language SMIL some of these
possibilities may be easily presented by introducing “fork™
and “join” mechanisms in the graph. Based on a node, there
are always several possible cases, but each possibility instead
of being a simple program arc may be a finite set of arcs (a
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fork). Likewise, instead of only having one finite set of arcs
able to reach a point, there can be a set of possibilities, each
being a simple program arc or afinite set of arcs, a “join”, thus
leading to a structured program arc. A path in the graph being
no longer simply a route (that is to say, a total order of states
which succeed each other in time), but a partial order, that is
to say the execution traces, but also the corresponding logic
traces, becoming as is generally known partial orders. Fur-
thermore, the program arc annotations become more com-
plex. Rather than apply to a simple program arc they apply to
more complex configurations between the nodes before and
after corresponding to a case. However, as before, these prop-
erties can be expressed on neighboring nodes (in the partial
order). Each route or sub-route in the graph generally corre-
sponds, not to a total labeled order of nodes, whereof the
nodes and arcs are annotated by predicates, but similarly
labeled partial orders. In this instance, it makes it possible in
this instance to support highly diverse synchronization
mechanisms at the SM language level, the only constraint
being to know how to transform the description into a SMIL
graph. Typically, a synchronization will be translated as a
“join” followed by a “fork™ joining then releasing the pro-
grams that are synchronized (two or several). For the sake of
simplicity, SM synchronization and parallelism primitives
are not introduced. Furthermore when in the rare cases where
such primitives will have to be used in this document, it will
be done at the SMIL intermediary representation, where
solely primitives “fork™ and “join” allow for a sufficient
expressiveness. Hence, at this stage the notion of program can
be generalized. A program will thus be defined as a finite set
of points linked by a finite set of transitions, provided with
one or several entries (only the single entry case is illustrated)
and one or several exits. The points may be annotated with
logic properties characterizing the states associated to the
point, the transitions may also be associated to logic proper-
ties describing the relationship linking the states correspond-
ing to the points it connects. When the program describes a
sequential program this last relationship describes how a state
of'the start point is linked to the state corresponding to the end
point. When the program describes a parallel program with or
without synchronization the states are typically tuples
describing the state of the process being executed in parallel,
and the relationships describe the partial order that links the
tuple from the start point of the transition towards the tuple of
the end point of the transition. But the program points can
alternatively be considered to be the local points in which
cases some transitions will be linked (in the case of “fork™ or
“join” the forked branches or the joining branches are linked).
The convention taken here has an impact on the evolution
rules themselves, and the tree structure derived from the
program, but not on the applicability of claims.
1.12 Scission/Branching

Thus, by providing the information technology means,
using characteristics of the description language (program-
ming or specification language) and equipment (that is to say,
“computer software”) which supports it, in order to assist the
user of the environment to split a command, or a referenced
program (that is to say a program that is called based on
another one) into a finite number of cases, each corresponding
to a processing case. These different case may each lead to a
different branching including potentially the branching to
“error” (which of course does not exclude that all or part of the
cases lead to, that is to say are branched, towards the same
point), particularly in a manner to (a) reduce or delimit the
“scope” of a command or sub-program in one or several of its
usages, or (b) be able to identify and utilize the combinatorics
or successions of impossible cases. For example, by way of
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illustration of (a), it is worth noting that at line 2 of the axiom2
it is considered that a restricted instruction, which always
removes the first element, is used. This operation can only be
applied to a sequence containing at least one element. This
program hence infers a local constraint at point 3. Further-
more, by way of illustration of (b), it is worth noting that if a
logic is considered leading from the start of the program to
point 3, the combinatorics of the transitions leading to this
point is incompatible with the transition which would cause
the branch “empty” of the following removeFirst to be taken.

In practice, for example, it is possible to identify before-
hand the possible cases to expect for a command or a sub-
program, such that the tool assists the user in selecting or
managing the choice of the cases to retain (not necessarily all
which would also create in itself a constraint) and potentially
the manner of associating the selected cases to the control
structure of the program during usage. This is what the SM
language naturally allows for. Typically, the equipment will
make it possible to ponder on the case breakdown, and par-
ticularly the cases to use. By way of example, here the
implicit definitions of “removeFirst”, and “divide” each pro-
vide two cases, and each time one of these commands is used,
the corresponding branching should be implicitly or explic-
itly decided of, or implicitly or explicitly decide that the case
is impossible or must not be used in the context of the call
(which is a manner of restricting the scope of the command).
The SM language and tool supporting it, verify that each
branching is either achieved, or implicitly or explicitly resent
to “error” which, by convention, expresses the impossibility
property of the corresponding transition.

The fact of asking these questions during the description
and thus the definition of a program incidentally facilitates the
program segmentation into cases during the definition for use
as a program/sub-program in the definition of other programs
to come. For example, the first usage of removeFirst in the
second version of “remove”, infers the case “notin” of the
program “remove” during the definition.

1.13 Branchings/Impossible Transitions

Typically, the potential to want to express, and then prove/
verify that certain transitions or prior-defined cases are
impossible at certain points (in some of their usages). This is
what has been carried out several times in the description of
axioms as much as in the programs to be proven, by using the
branching (implicit or explicit) provided for this purpose in
SM language. Hence, it is the preferred manner used here for
deciding on the cases to be used for a command or a program,
and introducing constraints on transitions, however it is obvi-
ously not the only manner. Furthermore, the computer soft-
ware may allow for it even when the language does not allow
for it, if need be, by adding annotations and specific process-
ing.

1.14 Capacity of Restricting the Semantics of Certain Steps

Considering that a program and the transitions it describes
thereto, or given a specification/formal description and the
transitions it describes (effect on the variables, pre/post,
weakest precondition, . . . ), the means are thus provided to
express the possibility of restricting the semantics (that is to
say, the definition domain, the processing possibilities) of
certain transitions, operations, commands or programs, to
reduce them to transitions which are more appropriate (as
they use certain primitives or well understood or well-honed
parts, or for any other reason). For example, it is the case in the
previous examples for the first versions of “remove” and
“divide”. In many situations this technique is an alternative to
the previous one (a version with a larger domain can be used,
but specific cases for the parts which extend the more
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restricted domain, then declare the impossibility of transi-
tions for the additional cases, or like here use a version having
a more restricted domain).

By way of additional example, in an imperative program, it
may be decided, for example, that a use of the operation/
instruction “increment of an integer” is limited to the case
where it corresponds to the addition without overflow (and
hence to the semantics of the increment in the usual math-
ematical sense). This is typically required without changing
the global semantics of the program, or by providing the
means to analyze the impact of the modification introduced
by this local restriction. In the previous example, the fact may
be expressed that the instruction is indeed only called under
these conditions (for example, because it is preceded by a test
checking that the variable is lower than a value guaranteeing
it).

The three previously presented mechanisms are hence
linked. In an embodiment, linkage is performed without the
third one, by a combination of the two first ones. In general,
this is what will be done in what follows. By way of an
additional example, a version of the division can be used in a
given place, which rules out the case of division by zero.
These last two examples may, for example, be obtained alter-
natively with versions of the increment operation (respec-
tively the division operation) which distinguishes the normal
case (that is to say, “true”) from the “overtlow” case (respec-
tively “divisionByZero” towards “error”.

Solely, the association of constraints to transitions has been
illustrated here. In embodiments, constraints can also be asso-
ciated to program points. In the here-presented SM language
fragment, the option is taken to only present the mechanisms
which make it possible to introduce the constraints associated
to the transitions, as a single-point constraint can always be
replaced with a transitional constraint by introducing just in
front of this point a command which corresponds to this
property, a command which distinguishes between two cases
“true” and “false” where the case “false” is declared as being
an impossible transition. The association of single-point con-
straints hence becomes a particular case of associating a
constraint with a transition. By contrast, in the case of a
language where constraints cannot be directly expressed on
the transitions (the case for current languages) and place
constraints (that is to say, typically invariants to be selected
from a list or combinatorics of predefined properties) in front
of the call instruction such as to indirectly reduce its useful
semantics, it is possible to structure these properties into a
property disjunction each one corresponding to a case, then
use the “restructuring” techniques introduced hereinafter in
order to associate the thus identified cases to structural con-
straints (or subsequent transitions). Furthermore, it is not
merely a case of placing invariants, but rather invariants asso-
ciated with instructions, as well as being guided and assisted
(for example, by selecting from a list of possible cases or by
leaving the responsibility of choice to the equipment).

1.15 Characteristics of Obtained Programs

The program obtained by means of the equipment, and
particularly in the case of SM, its intermediary form may be
considered as resembling a “flowchart” such as defined by
Robert W. Floyd, with several features. First of all, by resum-
ing the definitions used by Floyd, whereas the functions of
interpretation, and in particular the right identification of
what is generally called “loop invariant” in Floyd and in most
proof approaches which followed, are essential to the proof
in-itself, here, it is not necessarily the case. They may be
defined and be used in a traditional manner (that is to say, as
in Floyd-type approaches), however, the invention introduces
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new original manners. Particularly, all or part of the interpre-
tation functions or invariants provided by the user may be
proven as will be seen.

Furthermore, a Floyd-type approach has, at a given time,
one single instance of what is called, herein, “single-point
constraint”. This constraint is placed at the end of the program
(or like a couple of pre-post conditions located at its ends) to
describe the function or one of the functions that are expected
of the program. The proof of this unique constraint is
achieved by exhibiting a coherent interpretation function, or
by providing loop invariants which make it possible for us to
calculate this interpretation function (Dijkstra-type
approach). In the approach of the present invention, a tool is
proposed, allowing us to associate several local constraints
that are referred to as local properties (at several program
points), typically, wherever they appear natural to the user to
express (for example, the equality located in the axiom loop
(2)). Then, either classic techniques may be used, consisting
in completing the associations (adding some invariants, also
called here local properties, which in some way add redun-
dancy) such as to obtain an interpretation function coherent
with the constraint or constraints and make a proof by invari-
ant, or use other more specific proof techniques that do not
necessarily require the use of loop invariants or interpretation
functions. For example, the tree structure can be used by
using the logic sub-routes leading to this point in order to
characterize the properties in this point. Other more obvious
specificities when comparing the method presented here with
the instrumentation of more classic techniques derived from
Floyd-type approaches are, of course, the use of constraints
associated with transitions, the interdiction of certain con-
straints, and obviously the possibility to use thus instru-
mented programs as “axioms” (for example, axioms (1) and
2)), as well as intermediary program (“lemma” programs in a
certain manner).

In general, other components of a program such as its
sub-graphs may be associated with local properties. A pro-
gram being defined and provided with an execution model,
for example, deterministic or not, with or without backtrack-
ing possibility, a program can be used for describing several
types of sets, that is to say, domains, including data.

As regards expressions, those used for the program
description are generally distinguished (that is to say in a way
those defining its semantics) from those used to express the
(typically local) actual properties of the described program or
the properties attributed to it. In the rest of the document, the
term property is only used in this second sense. In the other
use cases, there will be mention of transition semantics or
point domain.

1.16 Re-organization

In certain cases, it can be useful to modify the structure of
the program in order to facilitate the verification. There are
numerous reasons which may lead to not construct directly
the structure that is thought to be the best adapted by using the
aforementioned mechanisms. For example, for methodologi-
cal reasons (starting from a program that has not been
described with a tool based on the method described here), or
simply because several different views corresponding to dif-
ferent program structures are required (in order to address, for
example, different verification needs). However, it can also be
due to using a language different from that of SM which does
not allow to express the case breakdown of the processing, or
the impossible transitions. The re-organization hence consists
in transforming the structure ofthe program (its branching, its
nodes, the annotations and cases used). Of course, the pro-
gram transformation described in this section does not nec-
essarily need to be actually achieved, but can simply be an
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abstract view of the program used by the equipment for its
own verification needs or for user interaction.

For the sake of simplicity, the presentation is limited to
using very basic techniques to illustrate it. Thus, the one hand
is limited to constant semantic program transformations, and
on the other hand, to only the following elementary transfor-
mations being used: a first basic transformation is to consider
one or several transitions arriving at one program point (not
necessarily all transitions arriving at this point), to redirect
these transitions towards a new point (a clone of the first,
which will particularly have the same annotations where
required) and to duplicate (clone) the transitions which origi-
nated from it (obviously, by using the same annotations for
the cloned arcs). This transformation ensures semantics pres-
ervation provided that the name of the program point does not
have any effect on the semantics, which is generally the case
and is particularly the case for the presented SM fragment; the
second elementary transformation consists in carrying out a
graph cleaning operation, for example, by deleting the dead
branches as already seen; a third category consists in adding
intermediary steps without affecting the semantics and
whereof all the cases are branched at the insertion point. Of
course, the possibilities depend on the adopted semantics.
Typically these operations, with the semantics based on the
examples from this disclosure, should be without effect on the
variables, and without preconditions or with satisfactory con-
ditions on all values at the application point. On the contrary,
deletions of certain intermediary steps may be achieved,
when these steps are neutral for the chosen semantics, and
finally, a possible specialization of certain annotations: when
certain parameters of a logic annotation are known the latter
may generally be simplified (for example, add(i,j,j+) may be
replaced by increment(j,j+) when « i« has for value » 1»,
p(xX)=>q(x,y) may be replaced by q(x0,y) if value x0 of x is
such that p(x0)=true).

Firstexample: return code. In a program and particularly in
a program written in a language that does not support, unlike
SM, the separation into different return cases and associated
branchings, or supporting this possibility with a certain cost
in terms of execution (for example, exception mechanisms in
an execution language), a return value can be positioned
which characterizes the manner in which exits a called pro-
gram (for example, “0” if exit is carried out normally, “~1"in
another case, and just after the call to this program, be led to
test the return code and based on the value “07, “~1” or any
other unexpected value to be branched to different places in
the program. In order to place oneself in the operating con-
ditions of the present method one may “clone” the exit point
of the called program on one side and then clone the points
that are immediately after the called program in the calling
program, and that perform the testing of the return value and
corresponding branching. This is done by using the transfor-
mation (a) one or several times, that is to say, once for “~1"
and potentially once for unexpected values, such as to have
three kinds of points both in the called program and in the
calling program each specialized in a case. Then, it is noted
that the state corresponding to the normal exit will always
have the return code positioned at “0” and hence, following
the test carried out on the return value, the same branching
will always be used. Consequently, the other branchings
implemented are impossible. The other points will have the
same properties, that is to say, that corresponding to the return
code “~1” and that corresponding to the other cases but obvi-
ously the branchings used and the branchings rendered
impossible after the test will no longer be the same.

Second example: Virtual machine (VM). Itis supposed that
avirtual machine or a language interpreter is described using
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a program. Typically, an interpreter loop will be provided in
which the instruction corresponding to the current point can
be read and decoded. This point can thus be considered to be
located in the interpreter loop where this processing starts,
and insert, just before it, an instruction which carries out itself
the reading and decoding operation (typically by duplicating
it), except that it will have as many exit cases as the number of
possible instruction types existing in the program to be ana-
lyzed, as well as a certain number of exception cases, that is
to say incorrect memory area, illegal instruction, etc.), and
where all the exit cases of this intermediary instruction are
branched, whereof the semantics will be such that they are
without effect on the variables and without pre-condition, that
is to say, total, at the insertion point. This transformation is
hence of (c¢) type, and thus, the situation is found of the
previous example where the other two types of transforma-
tion will be applied, such that an equivalent program will be
found which will have this time “cloned” the analysis point of
the command, such that if a particular program is selected to
interpret the transformation can be pushed a bit further (by
applying in a quite natural manner the set of authorized
elementary transformations) until the interpreting loop has
been replaced by a structure which will replace that of the
program to be interpreted. This can be achieved more directly
in fact in using in the first step a reading and decoding opera-
tion that has as many steps as program points of the inter-
preted program: each point corresponds to a particular pro-
gram instruction, but the same instruction being potentially
used many times in the same program, a more precise struc-
ture is obtained for the transformed interpreter which happens
to be exactly that of the interpreted program. In a certain
manner, a partial execution of the program will have been
done, when the program to be interpreted has been trans-
formed.

In these two examples, an equivalent program will be
obtained by transformation except for certain intermediary
steps that may be considered as invisible. The second pro-
gram thus obtained will be such that the proof of its properties
will make it possible to deduce properties of the first program,
and will have a richer program structure, which will allow for
applying certain “static” techniques, introduced here. Know-
ing that the executions of one of the programs may easily be
found in that of the others (considering the nature of the
applied transformations), a user may be easily convinced that
it will be easy to establish certain sufficiency relationships
between local properties of the programs (that of the start and
that obtained after transformation), even in the case where the
proper separation in cases and relevant branching has not
been obtained when describing the program of interest (for
example, in situation where the implementation or specifica-
tion language doesn’t support for separation in cases). Here-
inafter, the possibility of establishing sufficiency relation-
ships will be illustrated in a more detailed manner.

3. Use of the Program Structure with its Local Constraints
Associated with the Transitions for Program Verification

The use for verification may intervene in the expression of
properties, and/or for the proof itself.

Expression of properties: As for the expression of logic
properties (essential in program verification) the techniques
consist in considering the programs obtained with equip-
ments exhibiting one or several of the previous characteristics
(and hence with them the constraints that they express) as if
they were logic properties, (i) either as a means to structure
more elementary logic expressions, (ii) or as logic expres-
sions in their own right (a program would be a logic expres-
sion in a new type of logic system, where inference rules
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would be replaced by more sophisticated rules intended for
more complex electronic processing).
1.17 Decomposing the Program into Elementary Properties

Thus, in the axioml, it is decided that only the main case
“removeFirst” (and hence its corresponding transition) is
possible at the point where this command is invoked (that is to
say after call of the first command), and that the case “empty”
is impossible. This makes it possible to express a constraint/
property at this point (which, here is assumed, that is to say it
is an axiom, however the same program fragment may just as
well be used to express a property to be proved, or an inter-
mediary lemma). Intuitively, this constraint only expresses
that when the program reaches this place whatever the state of
the variables, it is impossible to take the branch “empty” (that
is to say one is not in the application conditions). Secondarily,
given the underlying execution model, i.e. without backtrack-
ing or deadlock, it also expresses that the remaining branches
are applicable (or that this point is never reached meaning that
it is a dead branch).

1.18 Link Between Local Properties of the Program and
“Proof Obligation”

Itmay be desired, according to the case, to want to make the
link between these properties and more classic logic formu-
lations (that is to say, typically “proofobligations™) in order to
call classic logic proof environments. In this case, the pro-
grams and the three mechanisms that they implement using
the equipment, purpose of the invention are to be considered
as a manner to structure the elementary logic properties, for
the interaction with the user (but also potentially to facilitate
the work of the equipment) during the proof.

First of all, bearing in mind that a route in the program
leading from one point to another, by taking the branchings
(not declared “impossible) in the execution flow of the pro-
gram, may be associated has been seen with a logic trace
which may itself be associated with a logic expression which
describes the constraints that must be respected by the values
taken by the program during the execution leading from the
first point to the second. Considering the program point
towards which such a route leads, or more generally a pro-
gram point and a set of routes all leading to this point, if
certain transitions starting from this point have been declared
impossible, then for each impossibility there is a property of
the form ¥ A.P=>]3B.Q where the premises P express logic
properties on the route/routes leading to the point of interest
and Q the relationship associated with the transition (and
potentially also whenever applicable the properties associ-
ated to the start and end points of the transition). Other
complementary properties may result from the execution
model. With the underlying model used here (imperative
model without “backtracking”, or “deadlock™) there is in

addition a property with the form VA P=>3B1.Q1V . . .

vV 3Bn.Qn where Q1, . . ., Qn representing the relationships
of’branches allowed starting from the point of interest. For the
axioml, for the second program point, that is to say, the point
located between the first command empty(e+) and the second
removeFirst(x+,e,e+), and the only logic trace/route that
leads thereto we have—:

Ve. [truelempty(e)=>]3(x,1) [true]remove(x,e,1)

For the first and second point, properties can be added
expressing the progression that are due to the underlying
execution model.

Je. [true]empty(e)
Ve. [true]lempty(e)=>[empty]remove(-,e,~)

Thus, there generally is a manner of generating a set of
basic properties associated with a program. Each property,



US 9,275,236 B2

21

being itself associated with a node and a route or set of routes
leading to this node in the program graph.

1.19“Proof Obligation” and Programs with Loops (Invariants
and Implicit Invariants)

When there is a finite number of logic traces, programs
without loops cam be implicitly or explicitly limited. Here,
three possibilities are exhibited which involve the use of loop
invariants. The first two are presented in the remainder of this
section, the third will be presented in a separate section.

The first is the classic use of loop invariants in the program
to prove. The user proposes invariants (at least loop invari-
ants). Typically, for a program with three branches A, B, C
that can be taken in this order, with the possibility of looping
on B, or skipping it (that is to say, the possible executions of
the program all conform with the regular language (A(B)*C),
provided with a proposed loop invariant called I, apply the
invariant technique is resumed to using, for example, instead
of the start program the programs without loops: Al IBL, IC,
where alternatively AIC, IBI depending on the approach used.
As in a conventional manner, these invariant techniques are
used on the target program (the theorem program, and not an
axiom program), it is generally not necessary to use/exhibit
invariant properties, which characterize with precision the
properties of the start program at the insertion place of the
invariant. It is sufficient to use a weaker property which is at
the same time a satisfactory property in loop entry and pre-
served by the loop and sufficient for proving the properties of
interest. In a certain manner, the classic use of the invariant is
a direct usage of the induction, and in fact, whatever the logic
trace of the first program, it is known how to associate logic
traces with it from the set of associated programs. For
example, to the logic trace corresponding to ABBC, it will be
obvious to assign to it the traces Al, IBI, IBI, IC from the
associated programs without loops; but the correspondence
does not need to exist in both directions. It is possible that,
instantiating traces of IBI do not correspond to any execution
of the start program, as the invariant is potentially weak.

The second possibility is illustrated by means of'an axiom2
which can make it possible to generate an infinite number of
routes and hence logic traces, and hence an infinity of logic
properties. If such a program was a theorem rather than an
axiom, the previous case could be found. When such a pro-
gram is used as an axiom, which is specific to the presented
method, although it is not classic, the same technique can be
used under the condition to have an invariant that corresponds
exactly (and not merely loosely) to the property respected by
the variables at the insertion point of the invariant. However,
the most important thing is the fact that it is not necessary,
when using the claims, to make explicit this invariant. It is
possible, and it is a feature of the method, to use an invariant
of a new type which is called implicit invariant. In the
example of the axiom?2 a loop invariant is used located at the
start ofa loop (it is more practical but not the only possibility),
referred to as « implicitlnvariant(x,e,f)» , which pertains to
the variables defined at the start of the loop (which a static
analysis may easily give us). The latter is implicitly defined
by induction (by definition it is the strongest invariant which
is applied at the start of the loop on the variables x, e, f). Once
this implicit invariant is thus defined, the situation is found
wherein an axiom program has been replaced by several
programs without a loop (here three as there is not only one
single loop in the start program).
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These three programs are:

program //axiom2a
addLast(x,e,f+) ; => implicitInvariant(x,e ,f) ;
program //axiom2b
implicitInvariant(x,e,f) ;
[empty :false]removeFirst(y+,e,e+) ;
[empty :error]removeFirst(z+,f,f+) ;
[false:error](y=z) ;
=> implicitlnvariant(x,e,f) ;
program //axiom2c¢
implicitInvariant(x,e,f) ;
[true :false,empty :true]removeFirst(y+,e,e+) ;
// following instructions not useful
¥
=>
[empty :error]removeFirst(z+,f,f+) ;
[false:error](x=2) ;

[true:error,empty :true]removeFirst(z+,f,f+) ;

implicitInvariant(x,e,f) ->[false]
implicit program

It will be seen how to use this implicit invariant generation
technique for the proof of property.

The properties expressed by the axiom?2, are generally not
simple to express in the existing formal approaches (for
example, in the present case, several quantification levels
would have been used to express the invariant explicitly).
Here, it is enough to follow the execution of the program in
order to understand which local properties apply to which
flow of execution and at which step of these flows. Thus
branching induces separation of flow, and allow for more
local properties. Here, local properties are described as tran-
sition impossibilities (or semantic or scope restrictions used).
These local properties basically express here that when an
element “x” is placed at the queue of a sequence “e”, the
sequence “f” thus obtained, if it is emptied element by ele-
ment, will give exactly the same elements and in the same
order as the sequence “e” if it is emptied in the same manner.
That is what the loop expresses. When the latter will have
been exhausted, there will be exactly one element in “f”
which will happen to have the value of “x”, as expressed by
the part of the program located after the loop.

In an embodiment, a program or fragment of a program
(that is to say, a program sub-graph), may be seen as a manner
of defining several relationships), particularly a relationship
per type of exit (label). Obviously, it is possible to consider
the unique global relationship formed by the union of all these
relationships, however, it is not the option that is taken here.
Thus, let it be considered that, for example, the following
program fragment extract of the axiom2 (this program frag-
ment corresponds well to a SMIL sub-graph, from the graph
of the axiom2),

[empty :exit]removeFirst(y+,e,e+) ;
[empty :otherl]removeFirst(z+,f,f+) ;
[false:other2](y=z) ;

Bl VTR S P
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naturally defines several relationships, the relationship which
corresponds to the exit “true” of this program fragment (in the
context of the axiom?2, it is the case of the loop path), that
which corresponds to the exit “exit” (exit of the loop in the
context of the axiom?2), as well as those corresponding to
cases “other]” and “other2” which in the context of the
axiom? are stated to be impossible (in this instance empty,
since pertaining to relationships). F will be the name of the
first of these relationships in the sequence. F will thus be the
relationship corresponding to one execution of the loop in
program Axiom?2. Then, E will be the name of the relationship
corresponding to the normal exit (that is to say “true”) of
another program fragment, the latter leading to the entry of
the program Axiom?2 at point 2 (without any looping on this
point). E is thus the relationship corresponding to the program
fragment preceding the entry into the loop for the program
Axiom?2.

Now, if an interest in (a) is taken, on the one hand, the more
complex program fragment P1 of the axiom2, which uses the
same entries as the axiom?2 but exits on the transition leading
from the program point 2 to point 5 (thatis to say, correspond-
ing to the case “empty” of the instruction associated with
point 2, that is to say, the exit of the loop), (b) on the other
hand, in fragment P2 which enters in the axiom program (2)
at point 5 of the axiom and uses the same exits as the axiom,
there are two program fragments which play different roles
with respect to point 2 of the program Axiom2. The first
program fragment is, of course, a combination of the two
previously identified program fragments, which correspond
to the relationship E and F. As the programs described here
assume an execution model without backtracking, this first
program, P1, expresses in a certain manner the properties
which characterize the values of the states at point 2, of the
program Axiom2, whereas the second program, P2, expresses
the properties which should verify these states at point 2,
given the rest of the program. If the relationships correspond-
ing to the main “true” exits of these two programs are respec-
tively called FP1 and FP2 (that is to say, the only ones con-
sidered here), these relationships respect the following
property: mg(FP1) = dom(FP2).

Hence, when placed in a program point, here the point 2 in
the program Axiom2, the program fragment which leads to
this point without ever going back to it again (in this instance
in the present case the point 2 is in a loop and the program P1
responds to this constraint), makes it in particular possible to
specify the domain of values that can be taken by the program
Axiom? in this point, here the point 2 (i.e. ng(FP1)), while
the program P2 makes it possible to specify the domain, at this
same point, making it possible to satisfy all the operations
coming after this step in the execution. The different opera-
tions used in these programs here, being deterministic, the
different relationships are functional (but not necessarily
total), particularly relationships E, F and FP1. It is easily
shown that FP1=Eo(F°U . . . UF" . . . )oG where F° is the
identity and F’ is the composite of i application of the function
F, and G is a restriction of the identity function in case the
sequence e is empty. Thus, it is easily shown that FP1 may be
obtained as a fixed point equation, in this instance those
implicitly defined by axiom2a and axiom2b (the strongest
property satistying this definition exists and is rng(FP1)). The
third implicit axiom, axiom2c itself representing the proper-
ties expressed by the property mg(FP1) = dom(FP2).

In embodiments, an implicit invariant has been defined in a
case where the automatic generation of an explicit invariant
would not have been possible due to the presence of a loop.
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1.20 Invariant Programs

In the SM language, even if it is possible to use classic
invariants (that is to say properties at program points), it is
also possible to use real program bits, handling in addition to
the program variables, potentially their own invariant vari-
ables. Instead of making explicit the invariant property which
is applied to a program point, an invariant program is used (bit
of'a program) which does not modify the current state but can
modify its own invariant variables. This invariant program
implicitly characterizes the state to which it is applied (that is
to say, its entry parameters) by describing the behavior that
such an invariant program would have when triggered at this
place. Of course, as many invariant programs as required (and
potentially put one in each program point) can be used. These
invariant programs may also share some of their invariant
variables (the initial value of an invariant variable is that left
by the invariant program which has preceded it). These invari-
ant programs may be seen as symbolic tests and make it
possible to indirectly/implicitly express local properties.

Typically, static techniques will be used so as to make sure
that the invariant programs do not modify the behavior of the
programs on which they are placed, as well as to show the
initialization and typing properties of the invariant variables.
If is decided to use traditional verification techniques based
on invariant techniques, these program invariants typically
are reduced to “proof obligations”.

Here, too, the program with program invariant may be
considered as a second program which only needs to be
proven in order to prove the first (that is to say, prove its
properties). The use of program invariants is thus an illustra-
tion of a use of a second program, i.e. the program with
invariant, having different functionalities from the first pro-
gram, and/or not merely being an abstraction of the first
program, as a way of the securing the first program. It can also
be considered as an illustration of setting sufficiency relation-
ships between the two programs, but this is not developed
here as dedicated illustrations are proposed thereafter. The
program invariant is also a manner of using program frag-
ments, that is to say, the invariant programs in order to implic-
itly describe invariant properties which would have alterna-
tively been explicitly expressed in these points.

1.21 Proof

The general approach is mainly about operating the struc-
ture of logic programs (program points, transitions and asso-
ciated constraints) by using program analyzing techniques,
automaton theory or program transformation, in order to
achieve or simplify verification, by potentially combining
them with traditional proof techniques. However, the struc-
ture of the programs may also be used such as to structure the
proofand present its progression and to interact with the user.
Finally, a last operating possibility which will be introduced
is the correlation of local properties of one or several pro-
grams to propagate certain proof results, particularly certain
transition impossibility proofs.

1.22 Interaction with the User

When a program point is reached during execution of a
program (hence having taken a route in this program), none of
the program transitions starting from this point and declared
impossible should be able to be executed and this must be able
to be proved. Furthermore, if the execution model is without
backtracking, one at least of the transitions allowing us to start
from this point amongst those declared impossible (the pro-
gram points and cul-de-sac transitions are removed after the
declaration of impossibility of using the branches leading
thereto, and so forth: it is a program analyzing technique that
is applied in order to simplify the program and put it in a
normal form) is “finable”, and this should also be able to be
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proven. Hence, it is proposed to structure the proof in this
manner: the tool attempts to prove the impossible transitions
in each route, and identify when it fails (and each time that it
is possible) the route/routes (they are prefixes of routes in
practice) which prevent it from proving the impossibility of a
transition (the set of identified routes able to be represented by
a sub-graph/fragment of programs, particularly in the case if
infinite sets). The user can thus analyze and get an idea about
the route/routes which lead to impossible transitions which
the environment cannot demonstrate. This can enable the user
to get a better idea about the problem (property that is actually
false and unable to be demonstrated, or indication to give to
the environment in order to resume the proof).

1.23 Structural Transformation of the Program

When the method is used, the verification itself is based on
the program structure and the constraints associated with it,
so that it is generally possible to carry out all or part of the
verification by transforming the program until leading to a
form that can be automatically or easily proven. Here, it
consists in transforming a program (which according to
points of view is either a logic property in a high-level logic,
or the manner of structuring the most basic and conventional
logic properties) into another equivalent program which will
either have exactly the same semantics or semantics such that
the proof of certain local properties of the second make it
possible to deduce that of other local properties of the first. It
will be said that a local property of the first is in a sufficiency
relationship with certain others of the second, if the proof of
the set of the latter makes it possible to deduce the proofofthe
first. In this instance, for illustration needs, the particular case
of equivalent programs will be taken. Two programs will be
considered as being equivalent if they have the same real
traces, (one simply deletes the logic traces or sub-logic traces
that do not have a solution and hence no possible instantia-
tions, and hence no corresponding execution traces), except
for potentially certain steps considered as invisible. Each
transformation may thus be considered as a proof step. Of
course, it is not necessary to have equivalent programs, in
order to establish and operate “sufficiency” relationships
between local properties themselves, the case where the two
programs are equivalent being a particular case. For the sake
of simplicity, the notion will be introduced through several
examples of equivalent programs.

In these examples, for the sake of simplicity, constant
semantic transformations are used. More generally, what is
important is that such a transformation makes it possible to
establish one or more sufficiency properties, that is to say the
proof that a local property of a program can be established if
there is proof of the properties in correspondence in another
program.

Two examples are taken, the unfolding of a definition and
the deletion of dead branches. Considering Theoreml, it is
possible to unfold “member” by its definition (by the body of
its definition) on condition to manage the conflicts of names
of'the variables if need be, for example, by using fresh names
of variables for the variables of the body of the unfolded
program. In this instance, the following program
Theorem1Unfold would be obtained:

Program Theorem1Unfold

1 : addLast(x,e,f+) ; // we can leave => here

[true:error,found :true] //and use [true:false,found :true] instead.

{// the internal representation (the annotated graph is the same in all cases

2: g :=f; // g is a new variable to prevent a collision
while
{
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-continued
2.9: //loop
3: [empty :error]removeFirst(y+,g,8+) ;
4: [true:found, false :true](x=y) ;
¥
¥

The two programs thus correspond in both senses, and
here, in a reversible manner as the transformation is an
equivalence. Certain transitions/arcs (or sub-graphs) can be
put in correspondence in the two programs. One will have, for
example, the forbidden transition of 2 towards “error” and
labeled by «[falselmember(x,f)» that corresponds to
« [empty [removeFirst(y+,f,f+)» inbothsenses (i.e. two sym-
metric directed correspondences). If one is proven impos-
sible, the other may also be considered as proven. For
example, if the impossible transition of the first program is
considered, it has a sufficiency relationship with the second
transition, that is to say that in order to prove its impossibility
all that needs to be done is prove the impossibility of the
second one (that of the second program). More generally,
there could be a set of transitions associated with one transi-
tion by sufficiency relationship (that is to say, to prove the
impossibility it would be sufficient to prove that the sets of
transitions in correspondence is impossible). More generally,
the correspondence may also be obtained between sub-
graphs. Here, the transition of the first program also corre-
sponds to the sub-graph going from the point preceding the
entry in the loop (here, the point is not materialized but could
be called 2.1, that is to say, intermediary points can always be
added, just as ifone had added in the program, the instruction,
«nop( )» which has no effect on the variables and which is
invisible) and the exit of the loop (that is to say, (i.e. « [empty]
removeFirst(y+,f,f+)» ). Likewise, the proof of impossibility
of the transition of the first program (which signifies that no
instance of this transition is possible at this place in the
program) is equivalent upon proof of inexistence of an execu-
tion trace instance taking this sub-graph at this place (of
course what is meant here is the existence of a route crossing
the sub-graph from end to end). There is also mention of the
impossibility of a sub-graph, or the fact that it is dead, which
does not mean that all its transitions or points are dead (in this
instance there are other possible exits from the loop, on
« [true](x=y) » , which are actually possible. For a sub-graph,
the impossibility is equivalent due to the fact that all logic
traces crossing the sub-graph right through without solution
(typically the logic expressions corresponding to them all are
without a solution, that is to say, they all make it possible to
infer “false”, or due to the fact that there is no logic trace (no
route leading from the start until the end of the sub-graph). It
can be observed that the impossible transition is a particular
case of an impossible or dead sub-graph. When a sub-graph is
impossible or dead, and proven as such, one may generally
cut the dead branches (here in this instance the transition
« [empty [removeFirst(y+,f,f+)» ).

2 Embodiments of the Invention
2.1 Composition with Synchronization

Most claims are illustrated using an innovative technique
that is called here “composition with synchronization”. It is
illustrated on the proof of Theorem1, or more precisely on the
proof of Theorem1Unfold as it is known how to secure Theo-
reml using the securing of TheoremlUnfold. On most
examples the “target program” will also be one of the
“elementary programs”. The case where they are different
will be the exception in the sequel of this document.
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Here, the exits known to be impossible (that is to say,
«error» branches) correspond rather naturally to the cases
where the implication would return “false”. It is sought to
prove this theorem using the axiom2, which intuitively
expresses that after having added an element at the end of a
list, and after having parsed the two lists in a synchronous
manner, a situation is obtained where the list of origin is
empty and where the increased list includes an element that is
equal to the added element.

To achieve this, a third program is used, obtained using a
certain “composition with synchronization” of the two pre-
vious programs. Here the two “elementary programs” will be
Theorem1Unfold and Axiom2. Theorem1Unfold will also
play the role of the “target program”, and the result of the
composition will be the so-called “correspondence program”.
The composition is here a parallel composition between two
programs, which synchronize with each other at certain
points. It is required here, that the execution of first program,
Theorem1Unfold, not be disrupted/impacted by the compo-
sition, that is to say, not be constrained by its composition
with the second. In order to describe the composition, it is
sufficient to describe its synchronizations, since between two
synchronizations the programs are supposed to behave nor-
mally, that is to say as if they were executed on their own, in
parallel.

Hence, it is proposed that the Axiom?2 program uses the
same values of variables “x” and “¢” as those used by the first
program. The advantage of this initial synchronization is that
it does not disrupt or more particularly does not constrain the
execution of Theorem1Unfold which should be the same
whether executed on its own or when composed (here the
focus is not on the execution time, but only (1) the sequenc-
ings, that is to say, order relationships, between events, and
(2) on the values of the variables taken by the program during
its execution). Such composition is said not to constrain the
program Theorem1Unfold. Return will be on the “non-con-
straint” concept, but the underlying idea is about making sure
of proving the properties of the target program, that is to say,
Theorem1Unfold here, in a general way, and not only for
certain values or for certain of its particular cases. More
precisely, it is considered that execution of Theorem1Unfold
instantiates/starts based on any values of the entry parameters
(it is a universal quantification). Here, there is no pre-condi-
tion to satisfy, hence an execution can start with whatever the
values provided in entry to Theorem1Unfold, provided that
the parameters have the right static properties, that is to say, a
good typing and a good initialization. Here, the language is
typed. However, the claims do not depend on this feature, or
even not necessarily on this particular notion of non-con-
straint. The claims are not based on the presence or absence of
preconditions either.

From a semantic point of view, this first example of com-
position with synchronization may be expressed in the SMIL
language using a “fork” of Axiom2, placed here at the entry of
the program, that is to say, the composite program is obtained,
for example, by modifying the Therorem1Unfold program,
by inserting a “fork™ which, on the one hand, executes the
Theorem1Unfold program normally and, on the other hand,
launches Axiom?2 in parallel with the current values of “x”
and “e”, that is to say, those given in entry to Theorem1Unfold
and thus to the composite program. Typically, a tool can be
imagined, which offers the user a choice of operations
whereof the application at a place is non constraining by
construction, which is the case here. In other situations non-
constraint may not be guaranteed by construction and may
require the discharging of proof obligations. The fact of
launching with a “fork” a second program without precondi-
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tion (lemma, axiom, . . . ) and assigning to it in parameters
values present in the current environment of the first program
is an example of a non constraining operation. By launching
these two programs in parallel (the rest of Theorem1Unfold
and the instance of Axiom?2) the first synchronization has thus
been specified here. For the sake of simplicity, the syntactic
elements allowing to describe this type of synchronization in
the SM language are not introduced and it is simply described
how this composition with synchronization may be achieved
in the SMIL language. In another language instead of SM, this
would amount to extending the language or allow the tool a
certain instrumentation (scaffolding). It will be seen that the
aforementioned “join” primitive will also be needed.

In order to obtain a composition that makes it possible to
prove the properties of the Theorem1Unfold program, other
synchronization points will now be added. For illustration
purposes a very basic synchronization strategy is chosen. [tis
non constraining by construction: for each of the two pro-
grams used for the composition a set of synchronization
points is identified and it is considered that all the combina-
tions between synchronization points are compatible. It is
considered that each program executes normally in parallel
until it meets a (new) synchronization point. The synchroni-
zation point may be described in the SMIL language by using
a“join”, potentially followed by a “fork™ in the case where the
programs synchronization points are not exit points and the
program need to continue their progression in parallel. In a
certain mannet, it consists in a basic synchronization strategy:
once this strategy is selected, the tool may itself build the
synchronization graph.

When the two programs have reached the following syn-
chronization point, they hence each resume their execution
until finding a new synchronization point and so on and so
forth. This manner of synchronizing is obviously non con-
straining, provided however, that a program does not wait
eternally for another program which will never reach another
synchronization point, either because it loops before synchro-
nizing again or because it has terminated. The issue of loops,
which can in general intervene in one of the programs syn-
chronized between two of its successive synchronizations
may be processed according to the case either by discharging
proof obligations, or by checking certain static conditions. In
this instance, in the following examples, loops will be avoided
using structural constraints (and hence static checking) no
loop is possible owing to the actual structure since loops of
composite programs all contain synchronization points.
Hence, if they loop, they do so together and not separately.
Nevertheless, the issue linked to the fact that one of the
programs may encounter a synchronization point while the
other program has already terminated its execution and is not
waiting for synchronization must be seen to. This could in fact
impose a constraint on the program. Hence, it is, for example,
decided that when one of the two programs ends the other is
freed from any synchronization constraint, and continues its
execution normally. It may hence possibly loop back, but
without having any incidence on the other program. Such a
synchronization diagram is clearly non constraining by con-
struction for both programs. Coming back to the illustrative
example it is supposed that the choice of the synchronization
strategy intervenes at the time the “fork™ is inserted in the first
program (here the initial “fork” of Axiom?2), and not in two
steps as has been done here for presentation purposes. Of
course, there are many other possible synchronization strat-
egies and the question here is not about finding the most
satisfactory one but simply to illustrate composition with
synchronization. Other possibilities will be seen which may
not be non constraining by construction and may be done on
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condition of discharge of proof obligations. In all of these
cases, it is rather easy to imagine a tool making it possible to
support the user in his/her description of the composition and
compute when the non-constraint check is not done in a
purely static manner, the proof obligations to be discharged.

Before indicating the synchronization points, chosen in the
example, it is worth noting that the idea is to illustrate most
claims, using the same example. The composition with syn-
chronization will be used to illustrate how to automatically
construct the correspondence program a composition strat-
egy/(provisioning of synchronization rules) is put forward.
The output of the composition may be considered as a pro-
gram in its own right, even though it is a parallel program with
synchronization, or even though in most cases it doesn’t need
to be presented/displayed as a standard program (e.g., FIG. 5
represents the correspondence program). Each execution of
this composite program may in this instance be put in corre-
spondence with an execution of the Theorem1Unfold pro-
gram, and an execution of the Axiom?2 program. If it is to be
considered, for example, that one may represent a behavior by
the corresponding trace (respectively a trace prefix), an
execution trace or (respectively a prefixes) in the composite
program is a partial order, that can easily be placed in corre-
spondence with two execution traces (respectively two pre-
fixes), one in the Theorem1Unfold program and the other in
the Axiom2 program. These two latter traces are, in all
examples, sequential (that is to say, total orders), but could be
themselves partial orders as well. This placing in correspon-
dence also infers a placing in correspondence and hence a
relationship between the traces of the two programs
Theorem1Unfold and Axiom?2. The set of traces of the com-
posite program represent in a certain manner the graph of the
correspondence or coherence relationship between the
behavior of the two programs. The non constraint property
may be thus expressed in a more formal manner here like the
fact that each behavior (partial or total) of the first program
corresponds via the thus established relationship, with an
acceptable behavior of the second, and hence, in other words,
that this relationship is total, that is to say, any behavior of
Theorem1Unfold should have an acceptable correspondence
in this relationship, but the reciprocity (that is to say the
subjectivity), is not necessary. The fact of being able to see the
non constraint property as a totality property of course
depends on the precise manner with which is defined the
relationship and notion of trace or even the acceptable evo-
lution notion. These theoretical considerations are not further
detailed here as concentration is being given to the invention.

This program, obtained here as a result of the composition
with synchronization of the two first, is the so-called “corre-
spondence program” and will be mainly used as a correspon-
dence relationship between the two elementary programs,
either to establish logic sufficiency relationships between
local properties of the these two programs to later infer local
properties of the target program, i.e. Theorem1Unfold, from
those of Axiom2, or more directly secure the first program
based on the securing second (and by using the correspon-
dence program as a link between these two programs), or even
as a combination of the two approaches.

The example chosen for the illustration and propose as
synchronization points for the Theorem1Unfold program is
returned to, the points identified by 1, 3, “true” and “error”,
where the points “true” and “error” respectively designate as
a rule the exit points by labels “true”, and “error” (if these
points do not exist they can be added in the intermediary
representation in SMIL, which is always possible). For the
Axiom?2 program points, 1, 2, “true” (instead of “true” for
Axiom?2 we could have taken point 7 and systematically end
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in 7, the rest of the program being useless for the properties to
be proven here) are taken. In fact, determining these synchro-
nization points may be provided by the tool and/or guided by
the user (the end points of the program and loop entries are
taken, which is a simple strategy that often gives good results,
and which may typically be proposed by the tool to the user as
one of the predefined strategies preventing him/her from hav-
ing to specify the points more finely).

The structure of each program infers constraints on the
manner whereof the synchronization points of a program may
succeed each other. Thus, for Theorem1Unfold, these con-
straints can be represented as depicted in FIG. 3, for example.

Point 1 can only be followed by point 3, which can itself
only be followed by point 3 (when it loops back), the “true”
exit, or “error” exit. More particularly, the logic traces leading
from one synchronization point to the next are represented as
follows:

In the state (1):

[true]addLast(x,e,e+); [true]g:=f; —=(3)

In the state (3):

[true]removeFirst(y+,g,8+); [true](x=y)—=(true)
[emptyremoveFirst(y+,g,g+); —(error)
[true]removeFirst(y+,g,g+); [false](x=y)—(3)

For the Axiom?2 program, points 1, 2, and « true» are taken
(instead of « true» for Axiom?2 point 7 could have been taken
and would systematically end in 7, the rest of the program
being useless for the properties to be proven here. This is
depicted in FIG. 4:

In the state (1):
[true]addLast(x.e,f+); —(2)
In the state (2):
[true]removeFirst(y+,e,e+);
[trucly=z); —(2)

[empty JremoveFirst(y+,e,e+);
[true](x=2);
[emptyremoveFirst(z+,f,f+);—(true)

Here, the impossible branches already proven to be impos-
sible in the graph are not represented, though they could have
just as well been kept visible. This has an impact on the
complexity of the composition, and on the list of sufficiency
relationships obtained, but does not change the proof result,
and illustrates the claims just as well.

Inthe knowledge that a very basic and loose mechanism for
the compatibility of the synchronization points has been cho-
sen, this first gives FIG. 5 if only these structural and syn-
chronization constraints are taken.

Such a graph thus remains pertinent for a program com-
posed of two programs, but its reading is more complex.
When a node is considered, for example, node (1.1) and a
transition starting from this node, for example, (1.1)—(3.2),
this signifies that the synchronization corresponding to the
first node is followed by the synchronization of the second
node but after the parallel execution of the two respective
branches. Hence, the graph represents the manner by which
synchronizations may string together, just like the description
of a program, except that here each transition between syn-
chronizations does not represent a simple sequential transi-
tion that is incrementally “concatenated” to the previous ones
in order to form the logic trace (resp. the execution trace if we
consider a particular instantiation of logic variables), but as a
partial order which represents a trace (the concurrent parallel
execution can be represented as the partial order of the local
states), which is, as for a sequential program, incrementally
“concatenated” to the logic trace (resp. execution trace), i.c. a
partial order in this case, representing the already parsed part
up behavior so far. This description thus allows description of
a (parallel/concurrent) program, the one obtained by compos-

[true]removeFirst(z+,f.{+);

[true]removeFirst(z+,f.{+);
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ing two programs. Hence, this gives a finite manner of repre-
senting the potentially infinite set of partial orders which each
represent a logic trace or an execution trace, thus generalizing
the view of a sequential program: a sequential program is the
particular case of a program that only acknowledges sequen-
tial traces, which are represented by total orders. When the
program can have executions with a number of unlimited
steps, that is to say, infinite executions, here it will come down
to its prefixes. Hence, the product of the composition with
synchronization that has just been described can itself be
considered as a program in its own right, and the synchroni-
zation graphs that have just been introduced can be used to
describe the SMIL intermediary format. Here the points (1.1),
(3.2), etc. of the composition graph are clearly points of the
composite program. It is considered here that the other points
which make it possible here to describe the intermediary
parallel steps are too: for example, point (3.2) has several
possible successors, that is to say, several cases, which are all
partial orders (initiated by “fork™), and whereof one is, for
example, on the one hand the 4 ; ,) "7 "/*! point, of the
Theorem1Unfold program and on the otherhand, 35 2)‘1’“0’"2,
of'the Axiom?2 program, where the indexes and exponents are
used in such a way as to avoid possible program point name
conflicts: the same point of one of the start programs may be
found to be represented several times in the composite pro-
gram, such as, for example, the point 4 of the
Theorem1Unfold program, which here will be found again,
for eXample, in4(3-2)17190rem1 Unfold, and 4317190rem1 Unfold in the
composite program. The point 35 ,, , will have as suc-
cessor 4(3_2)’1’”0’"2, which itself will have as successor the
point (3.2), but the corresponding transition will be linked to
the joint crossing of the transition leading from
4(3_2)17780’8’"1U"f01d, to this same point (3.2), because this tran-
sition is a “join”. Hence a manner of representing at the same
time graphically and in the SMIL language this composite
program is to consider that a program point may have a certain
number of transition cases, each being unique (this is always
the case in a sequential program) or multiple (this can be the
case in a composite program). Likewise, several transitions
can reach a program point, each able to be unique (this is
always the case in a sequential program and corresponds to
the SMIL “fork™) or multiple (this can be the case in a com-
posite program, and corresponds to the SMIL “join”). How-
ever, this is not the only perspective. In this instance, the
intermediary steps (and parallel or concurrent) may also be
considered, for example, as sub-programs. This is not deter-
mining here, as in all cases the composition can be consid-
ered, whether it be explicitly developed or not as a program in
its own right, with a finite number of points and transition
types, also leading to a finite number of verifications and/or
proof obligations.

‘When more than two programs are used in a composition a
simple form is not always reached (as all programs do not
synchronize at the same time), but here again generalization
can be done by composing iteratively: in order to compose
three programs, the two first ones are composed, one obtains
a graph of the type of the previous two, then one identifies the
synchronization points of the first composed one with the
third program, and so on and so forth. Such composed ones
will not be illustrated here, as that would complicate the
presentation of claims for nothing. In any case, whatever way
is used for building such compositions and whatever way is
used for representing such composite programs, the simple
concepts of (finite number of) points, single or multiple suc-
cessors, or predecessors, are usually a good vehicle for imple-
menting the embodiments described herein.

Axiom2
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Of course, the possibility still exists of representing the
parallel and concurrent execution by its different possible
interleavings and come down to a purely sequential program,
but it is both less efficient in terms of processing and espe-
cially here it generates a troublesome complexity for the
presentation, unless not all interleavings are used but repre-
sentative ones as will be briefly discussed in the sequel. In any
cases the present invention does not suppose a particular
execution model, and the two execution models. Sequential
by interleaving and or traces represented by partial orders
both work (with different levels of complexity).

2.2 Propagation of Congruences

Now, certain properties are going to be proven on the
composite program, i.e. the so-called correspondence pro-
gram. Here, an automatic strategy is going to be appliced
which consists in generating, then propagating, invariants,
which come in the form of a conjunction of congruences
(hence a relationship of equivalence). It is an example that is
obviously not limiting. It can be supposed that the variables of
each of the two programs are renamed in order to avoid
variable name conflicts between the programs used in the
composition. It has been decided to use index “t” for the
variables of the first program and index “a” for that of the
second one. In (1.2) x,=x, and e~e,, which results from the
operation of launching the second program based on the other
one’s values. The rest is a simple algorithm of fixed point: By
parsing the two parallel branches which lead to (3.2) it is
obtained x,=x,, e,~e, and f=f or (g,=f ). Proceeding like so
(congruence closure), taking note that in the case of loop back
on an already computed point, the weakest congruences must
be taken. This processing is repeated until a fixed point is
obtained. For all the points for which no program has termi-
nated its execution (that is to say, nor “true”, nor “error” for
any of the two programs) one has at least {=f, and X =X,.

Once this fixed point has been reached, the pruning of
branches may start. As it happens, there are three transitions
leading to error for the first program: (3,2)—(« error,2),
(3,2)—(error,true), and (3,true)—error.

If the two logic traces are taken which correspond to the
two parallel paths that directly lead from (3.2) to (error, 2) and
if congruence closure is applied to the result, the following is
obtained:

[empty JremoveFirst(—,10,-);
[true] removeFirst(y0+,e0,e1+);
[true]removeFirst(z0+,f0,f1+);
[true](y0=70);

Hence, these logic traces correspond to partial orders,
which are here flattened. The presence of [empty JremoveFirst
(-,0,-) and [true]removeFirst(z0+,{0,f1+) for the same value
“f0”, whereas removeFirst is deterministic show that the logic
expression is a contradiction and that the branch is thus
impossible (annotated by unsatisfactory logic expressions).
Intuitively, knowing that the synchronization makes it pos-
sible to make the value of “t” and “g” evolve at the same time
and in the same manner (and hence preserve the congruence),
the theorem to be proven cannot meet a stack end “f” whereas
the axiom itself can continue (without encountering this stack
end at this location).

The same technique applied to (3.2)—(error, true), also
leads to a trivial impossibility of the branch:
empty|removeFirst(-,f0,-);

[empty JremoveFirst(—+,e0,-);
[true]removeFirst(x0+,{0,f1+);
[true](x0=x0);

[empty JremoveFirst(—,f1,-);
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Intuitively Theorem1Unfold arrives at the end of the stack
“f?, whereas it has still an element (that is precisely the sought
element).

By applying the same research of impossibility to the tran-
sition (3.2)—(3,true), the element removed from “f” is found
to be different from “x”, while this element is equal to the
element removed in the axiom which itselfis, according to the
axiom, equal to the sought element “x0”. The suppression of
this branch consequently removes all the following sub-tree/
graph, which thus becomes unattainable. FIG. 6 depicts the
result obtained after pruning

While having composed the Theorem1Unfold program
with Axiom2 without constraining the target program,
Theorem1Unfold (all its executions exist in the compound),
all the branches of the target program are successfully pruned
which corresponded to the transition of 3 towards “error”,
which was precisely the transition sought to be eliminated.
Hence, the theorem has been proven (it was the only transition
to be proven in this theorem). Here, it has been used an
implicit sufficiency relationship between the target program
and the correspondence program: in order to be able to dem-
onstrate the impossibility of the transition of 3 towards
“error” in the first program, it is sufficient to demonstrate that
all the transitions (3,)—(error,) or 3—error are impossible,
either upon the construction of the composite program, or in
retrospect upon pruning the correspondence program, and/or
by propagation of local properties (impossibilities or other).
The composition hence makes it possible to either directly
prove certain local properties or to establish sufficiency rela-
tionships between certain programs with the purpose of prov-
ing certain local properties later on by propagation. Here,
sufficiency relationships are established between the target
and the correspondence program. Furthermore, in this
example it is seen that there can be several sets of conditions,
since there are several manners of showing the impossibility,
by proving, for example, the impossibility of an unavoidable
branch such as (3.3)—(3, true), or by showing the impossi-
bility of the sub-tree/sub-graph which contains it'. However,
the composition may also make it possible to establish suffi-
ciency relationships between the target and the second
elementary program, i.e. Axiom?2. If Axiom?2 instead of being
an axiom was a non yet proven lemma, with, for example, the
branch of the false equality not yet proven impossible, the
composition would give certain additional branches, such as,
for example, the branch going from (3.2) to (error, error),
which would add certain additional conditions to the already
identified sufficiency relationships or could create new suffi-
ciency relationships. Furthermore, before applying the tran-
sitive closure, one is made aware that one generally has a
sufficiency relationship between the target program and the
two others, that is to say, a set of sufficiency conditions for an
impossibility of the target program may comprise impossi-
bilities in the two programs (instead of only one).

Here one has a method in several distinct steps which
succeed each other: a composition with synchronization mak-
ing it possible to obtain a new program, the correspondence
program, then identification of the logic sufficiency relation-
ships, then propagation of impossibilities or more generally
of local properties. However, it is not generally necessary or
efficient to separate these steps so clearly. It is generally
possible to apply, for example, in one single pass (path, con-
gruence and pruning on the fly). In a certain manner, this
comes down to constructing sufficiency relationships in order
to use them, then deleting them on the fly. In practice, the
steps of establishing a relationship of sufficiency, propagation
and suppression of sufficiency relationships are skipped, thus
the composition is used directly for the proof of local prop-
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erties. By way of example, by regrouping the steps, it is worth
noting immediately that the branch (3.2)—(3,true) is impos-
sible and not only is it useless to construct but especially it is
avoided to construct or consider the following sub-graph/sub-
program, and the impossibilities of the first program are
proven on the fly without even having to identify the suffi-
ciency relationships. The fact of not placing in the program
Axiom2 the branches already proven impossible, also
amounts to shunting certain of these steps (creation of suffi-
ciency relationship, propagation, suppression).

Stronger synchronization constraints can be chosen, for
example, by imposing and expressing the equality of values
“f” and “g”, upon synchronization instead of only using, as
has been done here, structural synchronizations which do not
take into account the value of the variables and can thus
synchronize points irrespective of their values (a synchroni-
zation with data exchange in a parallel composition of the
program is an example of such a stronger synchronization,
that is to say, the value is given by one of the processes, and
received by the other, such that the variables, that in output
and that in input have the same value during the synchroni-
zation). In a certain manner, that would have led to presum-
ably imposing what has been obtained a posteriori as conse-
quence: similar proof obligations would have been obtained
for the non-constraint property rather than for the pruning.
This could have lead to more simple intermediate structures.
Here, and in the mentioned alternatives, the technique may be
rendered semi-automatic, that is to say, all that had to be done
was choose the axiom to apply and the synchronization points
and mechanisms. However, the ability to go further in the
automation can be done by having a set of predefined syn-
chronization strategies. For example, a very general strategy
which could have been used here is the strategy which con-
sists in synchronizing such as to keep the greatest coherence
possible in the processing of data streams obtained in the
different parallel branches. In the theorem, there is a data
stream, corresponding to “” which becomes “g” then evolves
by applying “removeFirst” step by step. This data stream is
easily found in the axiom once the axiom parameters have
been instantiated. Typically, this consists in synchronizing the
executions of “addLast” and “removeFirst” on both sides,
which here would give a comparable synchronization (with
slightly more synchronization points, but by avoiding the user
having to propose synchronization points himself/herself,
and hence reach a greater automation still).

As for the choice of axioms to be applied and the instan-
tiation of the parameters, it may be obtained a certain (partial)
automation by transposing rather naturally the usual tech-
niques used by the more classic provers to select and apply
certain axioms in a systematic manner.

Inthe case where no synchronization strategy is applicable,
the tool may be guided by indicating synchronization prin-
ciples (synchronization points or transitions, compatibilities
or incompatibilities, cases to foresee) and defining at the
worst one by one each of the synchronizations (there is a finite
number, since the number of program points is finite for each
program used for the composition, the number of programs is
also finite and the synchronizations are possible, which may
be represented by tuples of program points is thus too).

Here, it has been supposed that the program obtained by
composition of two or several parallel programs synchroniz-
ing at points describes behaviors corresponding to partial
orders such as traces. But, it could have just as well been
supposed that the traces of such a program were all the pos-
sible interleavings, and thus come down to purely sequential
programs for the composite program, that is to say, for the
correspondence program. It would have obtained the same
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results but with greater combinatorics (particularly potential
explosion of the number of states and transitions of the com-
posite program). Briefly described, in an example in the
sequel of the document, an intermediary solution which
would consist in using the sequential program which
acknowledges particular interleavings but representing the
partial order corresponding to the composition, that is to say,
for the needs of the invention it is not general to consider all
the interleavings, but only some (one in general) of the rep-
resentative interleavings for each parallel trace, or for each
equivalence class of traces by interleavings.

With the purpose of illustrating both the use of a program
to describe a coherence relationship and the generation of
sufficiency relationships, a new proof of Theorem1Unfold is
considered, where a new lemma is introduced:

Program LemmaAxiom2

[found :true]
{
addLast(x,e,f+) ;
while
2: [empty :exit]removeFirst(y+,e,e+) ;
3: [empty :error]removeFirst(z+,f,f+) ;
4: [false:error](y=z) ;
4.1: [true:found](x=y) ;
}
5: [empty :error]removeFirst(z+,f,{+) ;
6: [false:error](x=z) ; false)
7: [truezerror,empty :true]removeFirst(z+,f,f+) ;
¥

This program is very similar to the program Axiom?2. Basi-
cally, the main difference is that it allows for a premature exit
when the element “x” is this found in the first part of the
search (typically because “x” was already present in the
sequence “e”). This lemma has not yet been proven, even if
this can be easily done using Axiom2. This means that the
impossible branches (i.e. the ones leading to “error”) still
exist as they have not yet been pruned. Now, suppose some
coherence properties between  two programs
Theorem1Unfold and LemmaAxiom?2 are expressed. At this
stage of the proof, the impossible branches are still present.
Here are, by way of example, two coherence properties that
can be expressed:

Coherence 1: the program points correspond with each other
according to the graph: {(1,2), (3,2), (true,true), (error,error)
}. with some coherence on the data of the points in correspon-
dence: For example, when one of the programs exits by “true”
the other does too, and the values of “g” of Theorem 1Unfold
are equal to values “f”” of LemmaAxiom?2 in these correspon-
dences; The same coherence of values can, however, be
expressed at each of the correspondences between the two
programs (that is to say, not only upon exit). This informal
description describes well a correspondence relationship
between the execution traces of the two programs on the one
hand, the states of Theorem1Unfold corresponding to the
passage at points 1, 3, true, and error, and the states corre-
sponding to the passages at points 2, “true” and “error” of
LemmaAxiom?2, on the other hand. However, the third pro-
gram that would be obtained (1) as the composition of the two
programs by using the same synchronizations as those previ-
ously used, then (2) by simplification by pruning while propa-
gating the congruences is precisely a program which
expresses this coherence that has just been informally
expressed here. Thus, a program has been described, by com-
position here, which expresses the sought coherence between
the two Theorem1Unfold and LemmaAxiom?2 programs, and
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which by construction, is verified. This program, which is
again an example of correspondence program for the two
others, allows here to obviously identify sufficiency relation-
ships, by identifying for each impossible transition of
Theorem1Unfold the impossible transitions in correspon-
dence in LemmaAxiom2. The previous proof of
Theorem1Unfold was doing the same, with Axiom?2 instead
of LemmaAxiom2, but this was leading directly to pruning of
impossible transitions in Theorem1Unfold as impossible
transitions of Axiom2 were already discharged (and thus
pruned) by definition. Furthermore, congruence not been
propagated and pruned the correspondence program, a simi-
lar process would have resulted in identifying sufficiency
relationship also pointing to transitions of correspondence
program (i.e. the one not pruned here). This, of course, would
not be very efficient but is only mentioned here to illustrate
again the fact that sufficiency can range not only on the
elementary programs but also on the correspondence pro-
grams. Here, the correspondence program is both obtained
mechanically and parallel, but it is quite easy to imagine very
similar examples were one or both of these particularities
would be released. A sequential correspondence program
featuring the representative complete orders could be used,
for example, and this program could be provided explicitly
instead of being computed, basically by merging the two
programs into one featuring compatible execution. Details
are not provided here. Also, the target program doesn’t need
to be one of the elementary programs. Obviously considering
Theorem1 program as the target instead of Therem1Unfold
allows the reworking of all previous examples to achieve this.
Refinement relations used a way of showing that the imple-
mented program would be another obvious example.
Coherence 2: a coherence can also be expressed only putting
at stake the entry points of the two programs and the exit
points. In particular, intuitively the coherence that is sought to
be expressed here is that the two programs, if provided with
the same entries, always both exit by same-label exits (that is
to say, true or error), and furthermore with the same values.
This does not make much sense here as error exit are meant to
be impossible anyway, but it is easily to imagine similar
programs with multiple valid output. In this instance, this
coherence property corresponds to a form of refinement rela-
tionship and it is sought to be expressed using a program (in
this instance also the correspondence program). This corre-
spondence program can in fact be described as a simple
sequential program. In fact, if variables are first renamed
appropriately of one of the elementary programs so as to
match corresponding variables of the other one, the corre-
spondence program is LemmaAxiom2 himself

2.3 New Example of Composition with Synchronization

In order to prove Theorem?2 the exact same technique can
be used. The composition is illustrated with several programs
(instead of only one), and simplification is illustrated on the
fly during the construction of the composite program. Typi-
cally, the Theorem2Unfold program, which is an unfolded
version of Theorem?2, will be composed with two other pro-
grams  without constraining the first program.
Theorem2Unfold is an unfolded version (and equivalent) of
the theorem, in which the second instance of “member” has
been unfolded.

Upon the “launching” of the program, that is to say just
before the “addLast” call, a program is launched in parallel
(typically by a “fork™), namely LemmaUnfold defined here-
inafter. This program is instantiated with values “x” and “e¢” in
this point (they are those which are provided in entry of the
first program). This parallel launching is parameterized in the
same manner as carried out before by synchronization points.
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These parameters will be specified further on. In the follow-
ing step of the Theorem2Unfold program, that is to say just
after the “addlast” call, a second program is launched in
parallel, that is to say, an instance of Axiom?2 this time. This
second launching is also carried out with synchronization
parameters that will be specified further on. The LemmaUn-
fold program is obtained by unfolding the following propo-
sition of which the proof is not detailed:
member(x,e)=>member(x,e);

FIG. 7 represents the call logic and putting in parallel of the
three programs constituting the composition. Only the initial
“forks™ are represented here, by subsequent synchroniza-
tions.

As for synchronization parameters, used during parallel
launchings of LemmaUnfold and Axiom2, they are of the
same type as before. A loose synchronization automatically
obtained by considering as synchronization points: the starts
of the both programs, the starts of the loop and the various
program exits. These synchronizations are here by definition
done two by two, first between Theorem2Unfold and Lem-
maUnfold and than between Theorem2Unfold and Axiom2
(that is to say, lemmaUnfold and Axiom?2 will not synchro-
nize together). In order to simplify, these synchronization
points will respectively be called, t-0, t-loop, t-true and
t-false, for the program Theorem2Unfold, and 1-0, 1-loop,
1-true, for LemmaUnfold and a0, a-loop, a-true for Axiom?2.
Unlike the previous example, a single pass is used, thus mak-
ing it possible to prevent the creation of useless branches and
sub-trees and hence simplifying the construction.

If the start of the program (t-0,1-0) is considered, there are
two programs which start in parallel, the first
Theorem2Unfold will either pass by the “false” branch of the
first instance of “member”, and terminate by the exit “t-true”,
or will synchronize with the other program and go until the
entry of the loop “t-loop”, where it will await synchroniza-
tion. The other program, LemmaUnfold, will do the same,
either take the “false” branch of “member” and exit by
“1-true”, or go to the entry, “1-loop” of the LemmaUnfold
loop. The third program, if it launched will go to “a-loop” in
order to synchronize with the two others.

In theory, there is thus four combinations, except that two
are incompatible (the two instances of “member” are applied
on congruent values, and hence take exactly the same
branches and generate results which are also congruent).
Finally, there are only two possibilities (that is to say, two
transitions), the immediate exits of the two parallel programs
(i.e. both leading to (t-true, 1-true)), and the synchronization
of the three programs on their starts of respective loops,
namely (t-loop, 1-loop, a-loop). In the second case, it results
in a transition of (t-0, 1-0) towards (t-loop, 1-loop, a-loop)
knowing that this transition represents a partial order more
complex than two (or n) programs advancing in parallel and
joining in (t-loop, 1-loop, a-loop). To this transition, corre-
sponds the partial order where the start point (t-0, 1-0) is
connected (in the direction of increasing time), on one side
directly to (t-loop, 1-loop, a-loop) by the branch correspond-
ing to the advance in the Lemma program (from 1-0 to
1-loop), and on the other (t-1, a-0) which corresponds to the
advance in the Theorem2Unfold program from t-0 to t-1 (with
launching of the axiom, whence a-0).

This branch separates into two branches, which join at the
same point (t-loop, 1-loop, a-loop), one corresponding to the
advance in Theorem2Unfold up to t-loop, the other to the
advance in the Axiom?2 program up to a-loop. By advancing
along these branches (by expressing the corresponding logic
traces), three congruences are obtained, x,=x ,, e,~e , and f=f ,
modulo obviously the probable renaming of variables. Then,
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there is the transition of (t-loop, 1-loop, a-loop) towards itself
which still preserves this invariant, the transition of (t-loop,
1-loop,a-loop) towards (t-true,l-true,aloop) that is not
extended (because the first program is terminated). All the
other potential transitions (combinatorics to be considered)
are impossible. Those going towards (__,1-false,_) are impos-
sible as this transition is impossible for the second program.
Those going towards (t-false,_,_) are impossible as they are
contradictory, except for the case of (t-false,1-false,_) which
is impossible as previously explained. Those going towards
(_,_,a-true) are impossible as they are contradictory, except
for the case of (t-false,_,a-true) which is impossible, as pre-
viously explained.

This pruned structure, depicted in FIG. 8, by construction
thus clearly shows that the theorem is proven, as it removes all
transitions going from t-loop towards t-false.

It can also be incidentally seen that only one part of the
axiom is used (there is never any way out of the loop, the rest
of the axiom program being useless here). In the previous
example it was the case but less visible (only the last instruc-
tion was useless).

2.4 Program Transformation

The Theorem1Unfold program is now considered for
which a new incomplete proof done with the purpose of
illustrating certain claims differently is presented. First, a few
elementary transformations are applied (here elementary
transformations are used, but an equipment would typically
make it possible to use more powerful and less numerous
transformations). Here, the idea is that the tool establishes at
each step the sufficiency relationships between the modified
program and the start program, so that finally it is sufficient to
prove the obtained program, Theorem1UnfoldModn in order
to deduce the security of the initial program, Theorem1, in
this instance. However, these steps not being of interest here,
because such mechanisms have already been illustrated
above, are presented very superficially, just for the matter of
completeness of the proof example.

First of all, an instance of the “removeFirst” predicate is
inserted just before the point 3. This new instance will con-
cern a data of “seq” type, which is initialized by the value of
variable “f at the exit of the first instruction. In fact, in order
not to modify the variables of the initial program, that is to
say, the variable “f” here, and with the purpose of simplifying
the statement, an additional variable “h” is used that is ini-

tialized by means of a copy instruction inserted just after point
2.

Program Theorem1Unfold Mod1
1 : addLast(x,e,f+) ;
[true:error,found :true]

{
2: g:=f;

h:=e; /new

while

[*:true] removeFirst(z+,h,h+) ; // new

3: [empty :error]removeFirst(y+,g,8+) ;
4: [true:found](x=y) ;

¥
¥

As far as each one of the predicates inserted is “total” (that
is to say without pre-condition) and that each one of the
predicates inserted branches all its exit cases towards the
point before which it has been inserted, and thus without
modifying any variable of the initial program, this transfor-
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mation preserves the initial program, and in all cases the
properties expressed here by means of declarations of impos-
sible transitions.

In a certain manner, if the instructions added in the second
program are considered to be invisible and with no impact on
the program execution time, or as if it is the case here interest
is not in the program execution time but only in its function-
ality, the two programs (i.e. the one before transformation,
and the one after transformation) are equivalent. Thus, any
transition of the first program is either found to be identical in
the second program, or corresponds in a trivial manner to one
or several transitions (or sub-graph) in the second. Thus, in
order to prove the impossibility of'a particular transition in the
initial program, it is sufficient to establish the impossibility of
the corresponding transitions in the thus, modified program.
In order to resume it has hence been established a relationship
between the Theorem1Unfold and Theorem1UnfoldMod1
programs, then established that the proof of impossibility of
certain transitions of the second would make it possible to
deduce the impossibility of a transition that is declared to be
impossible in the first. Here, and one has a simple solution in
which the impossible transitions correspond to each other one
by one, and even more precisely in which there is only one
transition declared to be impossible in each program with a
very simple correspondence. In order to prove the impossi-
bility of a transition of the second program it is sufficient to
prove the transition impossibility of the other one. Hence, itis
a sufficiency relationship as defined beforehand. Here the
sufficiency relationship only associates one impossibility to
be proven in the first program in order to prove the target one,
in the second program, but the number of associated impos-
sibilities to discharge in the second program, could be mul-
tiple as well, or even be taken in more than one program, as
was, for example, illustrated in the sections on coherence
relations.

It is now described a new step obtained by modifying in the
last program the branching of the “empty” case of the inserted
“removeFirst” predicate, by redirecting it towards a partial
copy of the program, more precisely by redirecting it towards
a copy of the program loop as described hereinafter.

Program Theorem1Unfold Mod2
1 : addLast(x,e,f+) ;
[true:error,found :true]

{
2: g:=f;
h:=e;
while
{
3-1: [empty:exit] removeFirst(z+,h,h+) ; // branching modified
3: [empty :error]removeFirst(y+,g,8+) ;
4: [true:found](x=y) ;
while // duplicated
{ // duplicated
3a-1: [*:true] removeFirst(z+,h,h+) ; // duplicated
3a: [empty :error]removeFirst(y+,g,g+); // duplicated
4a: [true:found](x=y) ; // duplicated
} // duplicated
¥

This type of transformation is very easily achieved with a
tool that can guarantee and establish by construction the
correspondence of the properties, if need be by requesting the
discharge of a few proof obligations. Here, however, two
impossible transitions correspond in Theorem1UnfoldMod2
to the only impossible transition of Theorem1UnfoldMod]l,
and there is the need to prove the impossibility of the two in
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order to deduce, thanks to this correspondence, the impossi-
bility of that of the first program.

Thus, with these relationships between programs are con-
stituted, a network of programs which will make it possible,
by proving one of the programs or rather some of its proper-
ties to deduce by following the network from node to node,
and by propagating the satisfaction of the properties in accor-
dance with the available correspondences, the properties of
other programs until arriving here at the proof of the impos-
sibility property of the Theorem1Unfold program, here in this
instance of the proof of impossibility of one of its transitions
(that corresponding to the program exit without having found
the sought element). Here, a few similar steps are skipped in
order to arrive at the following new lemma program:

Program Theorem1Unfold Modn
1 : addLast(x,e,f+) ;
[true:error,found :true]

2: g:=f;
2.1: h:=e;

while

{
3-1: [empty:exit] removeFirst(z+,h,h+) ;
3: [empty :error]removeFirst(y+,g,8+) ;
4: [true:found](x=y) ;
3aa [empty :error]removeFirst(y+,g,8+) ;

[true:found, false :error](x=y) ;

Here, the second loop has been particularly unfolded once
(that is to say, this unfolding here consists in exiting and
inserting just before the entry of the loop a first passage in the
loop, that is to say, the loop only typically serving for the
possible second passage and those following). For the sake of
simplicity, the second instance of the inserted removeFirst
predicate has been removed as it is now useless in this part of
the program. The reasons that make it possible to remove it
are similar to those that made it possible to add it. It has then
been declared in 4aa that the equality could not be false which
in reality comes down to expressing that the branching
towards the unfolded loop (that is to say, the following pas-
sages are impossible). This has made it possible to remove
this dead branch (and hence to delete this unfolded loop, this
is why ultimately the loop has been replaced by a single
passage in the loop body). This transformation is trivial in
itself, but it adds a constraint which has to be proven, that is to
say, that the new branch that is declared to be impossible is in
fact just that. It is the main proof obligation pertaining to the
transformations achieved here, all the rest being able to be
verified statically and simply by the tool. In fact, this proof
obligation is directly expressed in the resulting program by
adding an impossible transition, and there is no need to prove
it separately. The correspondences between
Theorem1Unfold2 are quite direct and are managed by the
tool implementing the invention. Here, typically there are two
correspondences: (1) the first impossible branch of the first
program corresponds to the first of the second (in order to
prove the first “error” branch of instruction 3 of the first
program, it is sufficient to prove the second “error” branch of
instruction 3 of the first program), and (2) the second impos-
sible branch of the first program corresponds to the last two
impossible branches of the second (in order to prove the first
instruction 3a, it is sufficient to prove the two last ones, 3aa
and 4aa). In this instance, it consisting of this last correspon-
dence, it corresponds to the following intuition: in order to
prove that the loop (the second loop of Theorem1Unfold2, in
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this instance) cannot exit by the “empty” branch of “remove-
First” it is sufficient to prove that it cannot do so during the
first passage, and that there is no other passage as the follow-
ing equality cannot take the “false” branch (the equality is
always true). Obviously, a tool which would implement a less
precise version of the correspondences, for example, the one
only establishing one correspondence here, the one indicating
that the proof of the three impossibilities is necessary for each
one, where the set of impossibilities of the first program,
would be despite everything a valid implementation of the
invention.

What remains important is the correspondence that can be
obtained directly or by composition of the previous ones by
following the program network, between the program of
interest Theorem1Unfold and Theorem1Unfoldn (or any
other program making it possible to prove by propagation the
proof of certain of its properties). In this instance, the corre-
spondence between these two programs would establish that,
to prove the impossibility of the branch leading to “error” in
the Theorem1Unfold program (or even rather Theorem1), it is
sufficient considering the network of lemma programs to
prove the impossibility of the three branches declared as
impossible in the Theorem 1UnfoldModn program.

Ultimately, it is required here to extend the network in
order to establish this same relationship with the Axiom2
axiom, such that the proof of the three impossible branches of
the first return to those of certain impossible branches of
Axiom?2, a proof in this immediate instance by hypothesis in
the case of an axiom. The abstraction/renaming presented
hereinafter will be used, in order to achieve these last steps.
2.5 Abstraction/Renaming

When a program is described consideration may want to be
given that certain variables, and/or certain states (the term
state is used here in the sense “states associated with a certain
program point”™), are invisible. A variable may particularly be
considered as being globally invisible or invisible at certain
places (that is to say on certain states, that is to say, program
points). Another interesting mechanism is the possibility of
renaming the variables contextually. In order to characterize
an abstraction, a renaming or a combination of both, it is
sufficient, for example, to give a function which will be called
abstraction function which associates with each variable of
each state (or more precisely each variable of each program
point, that is to say, of each node in the graph of the interme-
diary representation), either, the new name of the variable
(itself in the case where there is neither any renaming nor
abstraction) or a characteristic value dedicated for this pur-
pose, let one say L, if the variable must be abstract (made
invisible).

AbsRen:VarsxProgramPoints—VarsU{ 1}

Given a program and a corresponding AbsRen abstraction
function, it will be associated to it abstract execution traces
(respectively abstract complete logic traces, or abstract logic
prefixes according to the chosen semantics) which will have
been transformed by application of the abstraction function
by transforming each element either by making it disappear
or by renaming it or making certain of its variables disappear,
according to the value associated by the AbsRen function
with the couple constituted by the variables of the environ-
ment constituted by the element (respectively by the variables
associated with the element).

It is worth noting that for a given program the Vars and
ProgramPoints sets are finite. In the SM language (and SMIL
intermediate language) it is considered, that the set of known
variables in a program point is not necessarily the same at
each program point, and these sets are computed by program
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analysis, such that the abstraction function only needs to be
defined on the pertinent variables at each point.

It is also worth noting that if the trace of the program point
is kept in the execution trace of a program (for example, by
having a programCounter variable which stores the current
program point, that is to say the name of the corresponding
node), one may easily define the abstraction function in a
coherent manner on the logic traces of the program.

Use in Modelization:

Such an abstraction function can have many uses in mod-
elization or program proof. In general, once a program has
been written several views for a same program (each corre-
sponding to a different point of view, for example, and to a
different abstraction) can be considered. By way of example,
if only the state of the start of a program and its exit state are
considered, one obtains the rather classic vision of a program
represented by means of a binary relationship between its
entry and its exit variables.

The abstraction also makes it possible to use programs or
more generally recursive or iterative structures as modeliza-
tion tool without having to worry about the possible redun-
dant or useless information that can be placed thereto, nor
even worry about the particular form used. In certain cases,
renaming make it possible to abstract the differences between
variables, particularly when a renaming makes it possible to
transform two different variables into a single one.

Generally, one has the choice in the programs which makes
it possible to describe an object or a given concept, and it is
not a question of letting one become disturbed by the search
of the best model. For that, one will have a mechanism that
will be called the abstraction and which makes it possible to
compute and associate a trace based on another that is gener-
ally richer. Typically an abstraction is a function, which
makes it possible to transform a logic trace without taking
into account the values of the logic variables used, if they are
instantiated, and without taking into account if possible the
encountered annotations. It is defined on the program itself,
but in a certain manner the abstraction is applied on the traces
of a program. In as far as it is possible to write a program,
which has the traces of another program after abstraction/and
or renaming, or to compare two programs provided with their
abstractions and or respective renaming, the programs them-
selves are focused on here.

There are several ways to formalize or parameterize the
abstraction or renaming notion that is introduced here. By
way of example, the program point could not have been used
as context information, but the program point signature (the
list of known variables known in a program point, certain
variables able to be without significant value and only char-
acteristics of a program point). This makes it possible to
process the abstraction applied to the traces with greater
homogeneity.

The abstraction is a very general notion, which can be
characterized in different manners. Here, the embodiment
taken into account is to only describe one of its particular and
restrictive forms. Here, the abstraction is an “abs” function
defined based on a “characteristic function” which indicates
is a variable is defined or not at a given program point.
Applied to the corresponding program point and to its anno-
tation, either it replaces the points of a start trace by points
whereof the environment has been obtained by restriction of
the start environment by the result of the characteristic func-
tion if it is a non-empty sub-set of the signature of the start
point (or any other object making it possible to characterize
such a set), or it makes this point disappear in the result curve
in the opposite case (undefined function or referring to a
particular distinctive value according to the conventions).
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In doing so, it is considered that by definition the order
relationship between the points of the result curve is that
obtained by morphism. Hence, the abstraction is a function
that establishes a morphism between the order relationships
expressed in the start and end traces.

A program provided with one of its abstractions might
itself be considered as a program. The points of this new
program are the points, which remain visible (those that do
not disappear, that is to say, those that are not made visible by
the abstraction). The (cases of) possible transitions starting
from a point are defined at least in an indirect manner through
the combination of the abstraction function and the program
fragments, which connect the corresponding visible points in
the start program.

Use within the Scope of the Invention:

It has here been defined a rather basic abstraction relation-
ship which only focuses on the states. In the same manner,
more sophisticated abstractions may be introduced also par-
ticularly able to act on the transitions. For the sake of sim-
plicity and brevity, one limits oneself here to this basic
abstraction even thought this nevertheless complicates the
presentation of the examples. Having such an abstraction
function, it is shown here how to implement the present
invention. Even here, by choosing a certain type of abstrac-
tion (for example, that presented here) there are typically
several manners of implementing the invention.

Given two programs each provided with their abstraction,
it can be decided to establish a relationship from one program
towards the other is it is thought that the sets of abstract
execution traces can be compared according to a certain graph
(forexample, the set of all or some abstract complete traces of
the one can be compared, e.g., inclusion, equality, . . . with the
set of certain of the abstract complete traces of the other).
Here, in this instance, the relationship will be such that all the
traces taking the branches declares as being impossible in one
will be branches taking the impossible branches in the other,
thus the proot of the impossibility in one (in this instance the
multiple impossibility) of the programs will make it possible
to deduce the impossibility in the other.

In the TheoremUnfoldModn program an abstraction which
only retains points 1, 3-1, 3, 3aa, 4aa, true, error is defined (the
exit point error is in fact kept, as useful, as long as the tran-
sitions leading thereto are not demonstrated as being impos-
sible). The first abstraction may hence be written:

1: <x—X,e—e>
3-1: <h—se>

3: <g—f>

3aa: <g—fa>

4aa: <x—X,y—>y>

For the sake of brevity, it is supposed that all the omitted
correspondences are by defaulttowards L. Thus, for example,
the point 2 which associates each of its variables, « X» , « e»,
«», to L is thus completely abstract, and the corresponding
component of the abstraction function is implicit. The point
3-1 only mentions the transformation for “h” which means
that the other variables are abstract in this point. The variable
“fa” represents here the last value taken by “g” when the
program does not exit prematurely after having found the
value sought for: the program exits prematurely in the case
where the value already existed in the start sequence, whereas
in the other cases the programs only finds the sought value in
last position, since it has just been added.

In Axiom2 the abstraction, which only retains 1, 2, 3, 5, 6,
and « true» is defined. The renaming which makes it possible
to only respectively keep variables <e, x>in 1, <f>in 3, <fa>
in 3b, <x, y> in 4b, <fc> in 3¢ are carried out.
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P <X—X,e—>e>
: <e—se>
s <f—f>
: <f—fa>
P <K—X,Z—>Yy>

Thenitis proposed to place the two programs in correspon-
dence and consequently their behavior with the purpose of
proving the local properties of one based on those of the other.
Forthis, we can either compose the two programs by using the
defined abstraction as a way to express synchronization strat-
egy, or prove by induction in a way that exploits some corre-
spondence between the two programs. In the latter case, we
typically do not need to explicitly build the program that
express the correspondence (i.e. the so called correspondence
program), but use it implicitly. Both cases can nevertheless be
seen as illustrations of the same claims.

Thefirst case is illustrated. The abstractions making certain
program points disappear, the synchronization will be on the
program points which remain visible, except for exit points
which will be considered here as being visible and unchanged
by the synchronization. More precisely two program points
will be synchronized if and only if they are visible and are
equal (their states, that is to say, their variable names and
values are equal, no value being here considered in the case of
exit points), and a visible point must be synchronized, except
if the other program is terminated or terminates: is placed in
astate based on which ithas no more visible points. In this last
case, the “live” program can continue its execution on its own
without having to carry out any other synchronizations. By
applying this composition strategy, which is only given here
by way of illustration, the composite so-called correspon-
dence program is obtained typically after some congruence
propagation and pruning Looking at this correspondence pro-
gram more closely, five groups of behaviors which corre-
spond for the first program can be identified, i.e.
Theorem1UnfoldModn: the program may (1) either exit on
“error” starting from point 3, (2) or on “true” starting from
point 3 (that is to say that, it is to be reminded that “found” is
renamed “true”), (3) or on “error” starting from point 3aa, (4)
or on “error” starting from point 4aa, (5) or on “true” starting
from point 4aa.

The first case always corresponds in the composition
obtained after simplification to a case where the program
Axiom? attempts to pass the transition leading it from point 3
to “error”, transition which is known to be impossible. More
precisely, when the first program arrives in 3, the Axiom2
program is also forced in 3 within the composition (that is to
say, the composition is non constraining for the first program,
and the only point of the composite program comprising point
3 of the first program is the synchronization point (3,3)).
Furthermore, at these points the values of the states are the
same and in particular the respective variables “g” and “f” of
the two programs have respectively the same values. Thus,
starting from (3,3) any transition from one towards « error
» implies that of the other: the only two transitions starting
from (3,3) are (3,3)—=(4,4), (3,3)—(error,error) hence the
transition towards “error” being proven (that is to say, sup-
posed) in Axiom2 is thus, necessarily impossible too in
Theorem1UnfoldModn (propagation of the impossibility
property of Axiom2 towards Theorem1UnfoldModn).

The second case is that where the program
Theorem1UnfoldModn does not have to parse the whole
sequence to find the sought element. In this case, the com-
posite program continues with the sole execution of Axiom2,
which parses anyway the entire sequence until its last ele-
ment. There is nothing to prove in this case anyway (no
impossible branch or other local property). It is easy to see
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that the composition strategy used here could easily be
improved by terminating the program for which the non con-
straint property is useless, here Axiom2, but this is not the
purpose here.

The third case corresponds to an “error” case of the
Axiom?2 program starting from point 5, which is known as to
be impossible, for reasons similar to the first case.

The fourth case corresponds to an “error” case of the
Axiom?2 program starting from point 4, which is known to be
impossible, for reasons similar to the first case.

Referring to FIG. 10, a flowchart of a method for securing
a first program with a second program, a third program, and a
fourth program, is depicted, according to an embodiment. In
an embodiment, the first program is a target program, the
second program is a representative program of the target
program, the third program (not shown) is a lemma program,
and the fourth program is a composition program. In a par-
ticular embodiment as described herein, the first program is
Theorem1, the second program is Theorem1Unfold, the third
program is Axiom?2, and the fourth program is a composition
of Theorem1Unfold and Axoim2, as in FIG. 5.

In an embodiment, the fourth program establishes a corre-
spondence relation between, for example, T1 in the second
program and A1 in the third program (but also many others).
The sufficiency relation allows for the discharge of the proof
of the first program (removal of the impossible branches).

Referring to FIG. 11, another embodiment of a method for
securing a first program with a second program, a third pro-
gram, and a fourth program, is depicted. The method for
securing a first program is substantially similar to the method
depicted in FIG. 10. However, in such an embodiment, the
pruning of impossible branches has been done on the fly when
constructing the fourth program. In other words, FIG. 10
illustrates a sufficiency relation is used such that once the
three source properties have been proven, the proof of the
target property is thus obtained. In FIG. 11, the source prop-
erty is already proven during construction of the fourth pro-
gram, and thus the sufficiency relation can be used to consider
the target property as proven.

The fifth case corresponds to the situation where the sought
element has not been found in the first part of the sequence,
and where it is the last element of the new sequence that is the
sought element. At this moment the Axiom2 program is inevi-
tably passing from point 4 to point 5, and there is nothing
particular to prove in this case anyway (no impossible branch,
no other local property).

This is the idea that can be used to prove by induction. For
achieving this, decomposition is used in cases corresponding
to the points of the correspondence program (this can be done
in various ways, one case per point of the correspondence
program, or on case per point of one elementary program,
typically the one to prove, and then on sub case per each
corresponding point of the correspondence program:m. In
practice, the correspondence program does not need to be
constructed explicitly. This proof by induction is not dis-
played here.

Such a composition may also make it possible to establish
sufficiency relationships. By considering, for example, that
the Axiom?2 program is a lemma that is not yet proven (and
thus had still some non pruned impossible transitions),
instead of being an axiom, the previous composition would
not prove anything immediately, but would make it possible
to create several sufficiency relationships which would lead
by propagation to the same situation of proof once the impos-
sible transitions of Axiom2 lemma were proven.

By way of additional illustration of the use of the abstrac-
tion/renaming, another use of the abstraction is described for
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the proof of the same theorem. In fact, Theorem1Unfold can
be directly connected to Axiom?2 by using one single lemma
program. For example, the following
Axiom2Theorem1program is considered:

addLast(x,e,g+) ; //tagl : A (Axiom2), T (Theoreml)

fi=g;//tag2: T
while
{

[empty :exit]removeFirst(y+,e,e+) ; // tag3 : A
[empty :error]removeFirst(z+,f,{+) ; // tagd : A, T
[false:error](y=z) ; // tag5 : A

[true:found](x=y) ; // tag6 : T

———

empty :error|removeFirst(z+,f,f+) ; // tag7 : A, T
false:error](x=z) ; // tag8 : A, T
true:found](x=y) ; // tag9 : T
true:error|removeFirst(z+,f,f+) ; // tagl0 : A

—r———

It has been proposed to apply rather naturally two abstrac-
tions to this program, respectively o, and o, making it pos-
sible for the program to respectively have comparable behav-
iors to those of program Axiom2 and Theorem1Unfold (it is
worth noting that it is useless to apply abstractions here to
these two programs as has been done in the previous example,
or to remain homogenous it is possible to apply identity
abstractions, which rename each variable in itself). The two
abstractions are not given explicitly here for the sake of brev-
ity, but can be obtained very easily, as has been done previ-
ously. The comments provide informal indications of the
points and instructions, which should be found in the axiom
and/or in the theorem.

This association then makes it possible to apply the inven-
tion in order to propagate properties and thus carries out a
verification step. More precisely, the transition which poten-
tially makes Theorem1Unfold exit by the “error” label, is thus
found to be associated with the sub-graph of
Axiom2Theorem] whereof the exits take the transitions
declared as impossible. The latter can themselves be associ-
ated with impossible transitions of Axiom2.

Thus, the abstraction applied twice has made it possible to
create the network (or a sub-network) of three programs as
represented in FIG. 9, wherein properties are propagated here
(the impossibility to carry out a certain transition, or take a
certain sub-graph) from the Axiom2 program towards
Axiom2Theorem] then from Axiom2Theoreml towards
Theorem1Unfold. In is worth noting here that in the two
applications of the invention we are in the particular case
where the correspondence program is one of the elementary
ones.

For the last example of use of the invention, a more com-
plex program has been exhibited (that is to say,
Axiom2Theorem1). This program corresponds in a certain
manner to a particular interleaving of the partial order that
would be obtained by applying the previously illustrated
composition. It also particularly makes it possible to illustrate
particular (and sequential) interleavings which offer in terms
of combinatorics the benefits of the partial orders while
remaining on sequential models (with a total order).

Another perspective is to consider that each abstraction
defines a new program extracted from Axiom2Theorem1, one
that is very directly compared with Axiom2, the other with
Theorem1Unfold. The last two comparisons able to be car-
ried out using a trivial composition where all the program
points are synchronized except for the program exits, which
receive a particular processing making it possible to guaran-
tee the non constraint property. The same vision could have
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been considered in the previous example: each abstraction
applied to one of the programs (here the two abstractions are
applied to the same program, in the previous case each is
applied to a different program), defines a new program. These
two programs are then compared using the trivial composi-
tion.

The abstraction allows, in a certain manner, to compare
objects that are presumably incomparable directly (incompa-
rable as their traces are in spaces of different natures, e.g.,
different naming conventions, variables or additional states,
etc). Hence, in a certain manner, the abstraction makes it
possible to offer a view of a program such that it can then be
compared with another program, or at the abstract view of
another program.

While the invention is amenable to various modifications
and alternative forms, specifics thereof have been shown by
way of example in the drawings and described in detail. It is
understood, however, that the intention is not to limit the
invention to the particular embodiments described. On the
contrary, the intention is to cover all modifications, equiva-
lents, and alternatives falling within the spirit and scope of the
invention as defined by the appended claims.

The invention claimed is:

1. A method for securing a first program, referenced here-
inafter as a target program with a second program, referenced
hereinafter as a target representative program, a third pro-
gram, referenced hereinafter as a lemma program, and a
fourth program, referenced hereinafter as a composition pro-
gram, each program comprising constitutive elements, said
constitutive elements comprising a finite number of program
points and evolution rules associated with the program points
and defining the passage from one program point to another
program point, and each program comprising a definition ofa
set of properties each property being associated with one or
more of the constitutive elements of the program, said method
comprising:

constructing the composition program by defining at least

one relation between at least one constitutive element of
the target representative program and at least one con-
stitutive element of the lemma program, said relation
being named a correspondence relation; and

exploiting the correspondence relation for establishing a

relation between one property of the first program and at
least one property of the lemma or composition pro-
gram, said relation being named a “sufficiency relation”
and being such that it creates an oriented relationship
between one local property of a program, and one or
more local properties of the same or another program
such that the proof of the latter properties proves the first
local property, or propagate the proof of said property to
at least one property of the target program.

2. The method according to claim 1, wherein the target
program is the target representative program or the composi-
tion program.

3. The method according to claim 1, wherein the compo-
sition program is the target representative program or the
lemma program.

4. The method according to claim 1, wherein the compo-
sition program is constructed automatically by applying syn-
chronization rules between the target representative program
and the lemma program.

5. The method according to claim 1, wherein the method
steps are implemented on a computer from a software product
comprising software instructions executed on the computer.

6. A system for securing a first program, referenced here-
inafter as a target program with a second program, referenced
hereinafter as a target representative program, a third pro-
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gram, referenced hereinafter as a lemma program, and a
fourth program, referenced hereinafter as a composition pro-
gram, each program comprising constitutive elements, said
constitutive elements comprising a finite number of program
points and evolution rules associated with the program points
and defining the passage from one program point to another
program point, and each program comprising a definition of a
set of properties each property being associated with one or
more of the constitutive elements of the program, said system
comprising:

a program builder for constructing the fourth composition
program by defining at least one relation between at least
one constitutive element of the target representative pro-
gram and at least one constitutive element of the lemma
program, said relation being named a correspondence
relation; and

a prover exploiting the correspondence relation for estab-
lishing a relation between one property of the target
program and said at least one property of the lemma or
composition program, said relation being named a “suf-
ficiency relation” and being such that it creates an ori-
ented relationship between one local property of a pro-
gram, and one or more local properties of the same or
another program such that the proof of the latter prop-
erties proves the first local property, or for propagating
the proof of said property to at least one property of the
target program.

7. A method for securing a first program means with a
second program means, a third program means and a fourth
program means, each program means comprising constitutive
elements, said constitutive elements comprising a finite num-
ber of program points and evolution rules associated with the
program points and defining the passage from one program
point to another program point, and each program means
comprising a definition of a set of properties each property
being associated with one or more of the constitutive ele-
ments of the program, said method comprising:

constructing the fourth program means by defining at least
one relation between at least one constitutive element of
the second program means and at least one constitutive
element of the third program means, said relation being
named a correspondence relation; and

exploiting the correspondence relation for establishing a
relation between one property of the first program means
and at least one property of the third or fourth program
means, said relation being named a “sufficiency rela-
tion” and being such that it creates an oriented relation-
ship between one local property of a program, and one or
more local properties of the same or another program
such that the proof of the latter properties proves the first
local property, or propagate the proof of said property to
at least one property of the first program means.

8. The method according to claim 7, wherein the first
program means is the second program means or the fourth
program means.

9. The method according to claim 7, wherein the fourth
program means is the second program means or the third
program means.

10. The method according to claim 7, wherein the fourth
program means is constructed automatically by applying syn-
chronization rules between the second program means and
the third program means.

11. The method according to claim 7, wherein the method
steps are implemented on a computer from a software product
comprising software instructions executed on the computer.
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